Câu hỏi:
13/07/2024 388Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau. Gọi H là chân đường vuông góc hạ từ O đến mặt phẳng (ABC). Chứng minh rằng:
a) BC (OAH);
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Vì OA OB, OA OC nên OA (OBC). Suy ra OA BC.
Mà OH (ABC) nên OH BC. Do đó BC (OAH).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và đáy là tam giác ABC vuông tại B. Kẻ AM vuông góc với SB tại M và AN vuông góc với SC tại N. Chứng minh rằng:
a) BC (SAB);
b) AM (SBC);
c) SC (AMN).
Câu 2:
Cho hình lăng trụ tam giác ABC.A'B'C' có AA' vuông góc với mặt phẳng (ABC) và đáy là tam giác ABC vuông tại B. Chứng minh rằng:
a) BB' (A'B'C');
b) B'C' (ABB'A').
Câu 3:
Cho hình chóp S.ABC có SA ^ (ABC), tam giác ABC nhọn. Gọi H, K lần lượt là trực tâm của tam giác ABC và SBC. Chứng minh rằng:
a) BC (SAH) và các đường thẳng AH, BC, SK đồng quy;
b) SB (CHK) và HK (SBC).
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Chứng minh rằng:
a) SO (ABCD);
b) AC (SBD) và BD (SAC).
về câu hỏi!