Câu hỏi:

12/07/2024 743

Cho tứ diện ABCD có AB = AC và DB = DC. Chứng minh rằng AD BC.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ diện ABCD có AB = AC và DB = DC. Chứng minh rằng AD vuông góc BC. (ảnh 1)

Gọi M là trung điểm của BC.

Xét tam giác ABC có AB = AC và AM là trung tuyến nên AM là đường cao.

Do đó AM  BC. (1)

Xét tam giác BCD có DC = DB và DM là trung tuyến nên DM là đường cao.

Do đó DM BC. (2)

Từ (1) và (2) có: BC (ADM). Suy ra BC AD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và đáy là tam giác ABC vuông tại B. Kẻ AM vuông góc với SB tại M và AN vuông góc với SC tại N. Chứng minh rằng:

a) BC (SAB);

b) AM (SBC);

c) SC (AMN).

Xem đáp án » 13/07/2024 10,226

Câu 2:

Cho hình lăng trụ tam giác ABC.A'B'C' có AA' vuông góc với mặt phẳng (ABC) và đáy là tam giác ABC vuông tại B. Chứng minh rằng:

a) BB' (A'B'C');

b) B'C' (ABB'A').

Xem đáp án » 13/07/2024 5,976

Câu 3:

Cho hình chóp S.ABC có SA ^ (ABC), tam giác ABC nhọn. Gọi H, K lần lượt là trực tâm của tam giác ABC và SBC. Chứng minh rằng:

a) BC (SAH) và các đường thẳng AH, BC, SK đồng quy;

b) SB (CHK) và HK (SBC).

Xem đáp án » 13/07/2024 3,683

Câu 4:

c) 1OH2=1OA2+1OB2+1OC2.

Xem đáp án » 13/07/2024 2,331

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Chứng minh rằng:

a) SO (ABCD);

b) AC (SBD) và BD (SAC).

Xem đáp án » 13/07/2024 1,996

Câu 6:

b) H là trực tâm của tam giác ABC;

Xem đáp án » 12/07/2024 403

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn