Câu hỏi trong đề: Giải SBT Toán 11 KNTT Bài 26. Khoảng cách có đáp án !!
Quảng cáo
Trả lời:
c) Dựng hình bình hành ABCD thì AB // CD nên AB // (SCD) và mặt phẳng (SCD) chứa SC nên d(AB, SC) = d(AB, (SCD)). Mà d(AB, (SCD)) = d(A, (SCD)).
Kẻ AN DC tại N, kẻ AQ SN tại Q
Vì ADC là tam giác đều, AN là đường cao nên .
Vì SA (ABC) nên SA (ABCD), suy ra SA DC mà AN DC nên DC (SAN).
Vì DC (SAN) nên DC AQ mà AQ SN nên AQ (SDC).
Khi đó d(A, (SCD)) = AQ.
Xét tam giác SAN vuông tại A, có ,. Vậy d(AB, SC) = .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hạ AH ^ B'C' tại H. Khi đó d(A, B'C') = AH.
Vì ABC.A'B'C' là lăng trụ đứng nên các mặt bên là hình chữ nhật, do đó AA' = BB' = CC' = a, AB = A'B' = a; AC = A'C' = a, BC = B'C'.
Xét tam giác ABB' vuông tại B, có .
Xét tam giác ACA' vuông tại A, có .
Suy ra AC' = .
Xét tam giác ABC vuông tại A, có .
Suy ra B'C' = .
Do đó AB' = AC' = B'C' = . Suy ra tam giác AB'C' đều.
Xét tam giác AB'C' đều có AH là đường cao nên .
Vậy d(A, B'C') = .
Lời giải

a) Kẻ BH AC tại H.
Vì SA (ABC) nên SA BH mà BH AC. Suy ra, BH (SAC).
Vì ABC là tam giác đều cạnh a có BH là đường cao nên .
Do đó d(B, (SAC)) = BH = .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.