Câu hỏi:
13/07/2024 2,329Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A và AB = AC = AA' = a. Tính theo a khoảng cách:
a) Từ điểm A đến đường thẳng B'C'.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Hạ AH ^ B'C' tại H. Khi đó d(A, B'C') = AH.
Vì ABC.A'B'C' là lăng trụ đứng nên các mặt bên là hình chữ nhật, do đó AA' = BB' = CC' = a, AB = A'B' = a; AC = A'C' = a, BC = B'C'.
Xét tam giác ABB' vuông tại B, có .
Xét tam giác ACA' vuông tại A, có .
Suy ra AC' = .
Xét tam giác ABC vuông tại A, có .
Suy ra B'C' = .
Do đó AB' = AC' = B'C' = . Suy ra tam giác AB'C' đều.
Xét tam giác AB'C' đều có AH là đường cao nên .
Vậy d(A, B'C') = .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 60°, biết tam giác SBC đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a khoảng cách:
a) Từ điểm S đến mặt phẳng (ABC).
Câu 2:
Cho hình chóp S.ABC có đáy là tam giác ABC đều cạnh bằng a, SA (ABC) và SA = 2a. Tính theo a khoảng cách:
a) Từ điểm B đến mặt phẳng (SAC).
Câu 3:
Trên một mái nhà nghiêng 30° so với mặt phẳng nằm ngang, người ta dựng một chiếc cột vuông góc với mái nhà. Hỏi chiếc cột tạo với mặt phẳng nằm ngang một góc bao nhiêu độ? Vì sao?
về câu hỏi!