Câu hỏi:
13/07/2024 8,828
Đường đi và khoảng cách từ nhà anh Thanh (điểm M) đến công ty (điểm N) được thể hiện trong Hình 22. Hãy tìm con đường ngắn nhất để đi từ nhà của anh Thanh đến công ty.

Quảng cáo
Trả lời:
Lời giải:
Xét ΔIAB và ΔICD ta có:
\[\widehat B = \widehat {D\;}\] (gt)
\[\widehat {AIB} = \widehat {CID}\] (đối đỉnh)
Suy ra ΔIAB ᔕ ΔICD (g.g) nên \[\frac{{IA}}{{TC}} = \frac{{IB}}{{ID}} = \frac{{AB}}{{CD}}\]
\[ \Rightarrow \frac{{IA}}{{2,4}} = \frac{{7,8}}{{ID}} = \frac{9}{3} = 3\;\] ⇒ IA = 7,2; ID = 2,6
Quãng đường đi từ M → A → I là: 4,73 + 7,2 = 11,93 (km)
Quãng đường đi từ M → B → I là: 4,27 + 7,8 = 12,07 (km)
Quãng đường đi từ I → C → N là: 2,4 + 1,84 = 4,24 (km)
Quãng đường đi từ I → D → N là: 2,6 + 1,16 = 3,76 (km)
Vậy quãng đường ngắn nhất để đi từ nhà của anh Thanh đến công ty là M → A → I → D → N với độ dài 15,69 km.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Chu vi tam giác ABC: AB + AC + BC = 19.
Tỉ số chu vi của hai tam giác ABC và A'B'C' là: \[k = \frac{{19}}{{66,5}} = \frac{2}{7}\].
ΔABC ᔕ ΔA′B′C′ nên \[\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = \frac{2}{7}\].
Vậy: A′B′=14, A′C′=21, \[B'C' = \frac{{63}}{2}\].
Lời giải
Lời giải:
a) Xét ∆AFE và ∆MNG có:
\[\frac{{AF}}{{MN}} = \frac{b}{{3b}} = \frac{1}{3};\;\frac{{FE}}{{NG}} = \frac{a}{{3a}} = \frac{1}{3};\;\frac{{AE}}{{MG}} = \frac{c}{{3c}} = \frac{1}{3}\].
Suy ra \[\frac{{AF}}{{MN}} = \frac{{FE}}{{NG}} = \;\frac{{AE}}{{MG}}\].
Vậy ΔAFE ᔕ ΔMNG (c.c.c).
b) Tam giác AFE đồng dạng với tam giác MNG theo tỉ số \[\frac{1}{3}\] nên tỉ số chu vi của hai tam giác đó cũng bằng \[\frac{1}{3}\].
Vậy chu vi tam giác MNG là: 15.3 = 45 (cm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.