Câu hỏi:

04/12/2023 326

Cho tam giác ABC đều có hai đường phân giác của góc B và C cắt nhau tại I. Gọi M là trung điểm của BC. Biết AI = 3 cm, độ dài đoạn thẳng IM là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: B

Cho tam giác ABC đều có hai đường phân giác của góc B và C cắt nhau tại I. Gọi M là trung điểm của (ảnh 1)

Xét ∆ABC đều có BI, CI là hai đường phân giác của tam giác nên AI cũng là đường phân giác của góc BAC^

Do đó AI cũng đồng thời là đường trung tuyến của ∆ABC.

Chứng minh tương tự, ta sẽ có BI, CI đều là đường trung tuyến của ∆ABC.

Suy ra I là trọng tâm của ∆ABC

Khi đó A, I, M thẳng hàng và AI=23AM

Suy ra IM=12AI=123=1,5 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B

Cho tam giác ABC cân tại A. Gọi G là trọng tâm của tam giác, I là giao điểm của các đường phân giác  (ảnh 1)

I là giao điểm của các đường phân giác trong tam giác nên I cách đều ba cạnh của ΔABC. Do đó khẳng định A là sai.

G là trọng tâm nên G là giao điểm của ba đường trung tuyến, không phải giao điểm ba đường phân giác của tam giác, hay G khác I, do đó khẳng định C là sai.

Ta có: ΔABC cân tại A, I là giao điểm của các đường phân giác trong tam giác nên AI vừa là đường trung tuyến đồng thời là đường phân giác của BAC^. Mà G là trọng tâm của ΔABC nên AG là trung tuyến của ΔABC.

Do đó AI và AG là hai đường thẳng trùng nhau hay A, G, I thẳng hàng.

Vậy khẳng định B là đúng, ta chọn phương án B.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D

Cho tam giác ABC có góc A= 90 độ các tia phân giác của góc B và góc C cắt nhau tại I. Gọi D, E là chân các đường vuông (ảnh 1)

Xét ΔABC có các tia phân giác của B^ C^ cắt nhau tại I nên I là giao điểm của ba đường phân giác trong ΔABC.

Suy ra AI là đường phân giác của A^ và I cách đều ba cạnh của ΔABC, do đó ID = IE.

Vậy ta chọn phương án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP