Câu hỏi:

13/07/2024 238

Cho biểu thức

\(P = \frac{{2x - 6}}{{{x^3} - 3{x^2} - x + 3}} + \frac{{2{x^2}}}{{1 - {x^2}}} - \frac{6}{{x - 3}}\) (x ≠ 3, x ≠ 1, x ≠ –1).

Tìm tập hợp các giá trị nguyên của x để P có giá trị là số nguyên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(P = - 2 - \frac{6}{{x - 3}}\) nên để P là số nguyên thì \(\frac{6}{{x - 3}}\) phải là số nguyên.

Suy ra 6 (x – 3) hay (x – 3) Ư(6).

Khi đó (x – 3) {1; 2; 3; 6; –1; –2; –3; –6}.

Suy ra x {4; 5; 6; 9; 2; 1; 0; –3}.

Loại x = 1 vì không thỏa mãn điều kiện x ≠ 3, x ≠ 1, x ≠ –1.

Vậy x {4; 5; 6; 9; 2; 0; –3} thì thỏa mãn yêu cầu đề bài.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\frac{{5x + {y^2}}}{{{x^2}y}} - \frac{{5y - {x^2}}}{{x{y^2}}}\)

\( = \frac{{y\left( {5x + {y^2}} \right)}}{{{x^2}{y^2}}} - \frac{{x\left( {5y - {x^2}} \right)}}{{{x^2}{y^2}}}\) (Mẫu thức chung là: x2y2)

\( = \frac{{5xy + {y^3}}}{{{x^2}{y^2}}} - \frac{{5xy - {x^3}}}{{{x^2}{y^2}}}\)

\( = \frac{{5xy + {y^3} - 5xy + {x^3}}}{{{x^2}{y^2}}} = \frac{{{x^3} + {y^3}}}{{{x^2}{y^2}}}\).

Lời giải

Ta có:

\(P = \frac{{{x^2} + 2x}}{{{x^3} - 1}} - \frac{1}{{{x^2} - x}} - \frac{1}{{{x^2} + x + 1}}\) (x ≠ 0, x ≠ 1)

\( = \frac{{{x^2} + 2x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{1}{{x\left( {x - 1} \right)}} - \frac{1}{{{x^2} + x + 1}}\)

\( = \frac{{\left( {{x^2} + 2x} \right)x}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{{x^2} + x + 1}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{x\left( {x - 1} \right)}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{\left( {{x^2} + 2x} \right)x - \left( {{x^2} + x + 1} \right) - x\left( {x - 1} \right)}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{{x^3} + 2{x^2} - {x^2} - x - 1 - {x^2} + x}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)\( = \frac{{{x^3} - 1}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)\( = \frac{1}{x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay