Câu hỏi:
13/07/2024 527Chứng tỏ rằng chỉ có một giá trị nguyên của của x để P cũng nhận giá trị nguyên.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Để P nguyên thì 1 ⋮ x, tức là x ∈ Ư(1).
Suy ra x ∈ Ư(1) = {1; –1}.
Mà điều kiện xác định của P là x ≠ 0, x ≠ 1 nên ta loại trường hợp x = 1.
Do đó, chỉ có một giá trị x = –1 thỏa mãn yêu cầu đề bài.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính:
\(\frac{{5x + {y^2}}}{{{x^2}y}} - \frac{{5y - {x^2}}}{{x{y^2}}}\);
Câu 2:
Rút gọn biểu thức \(P = \frac{{{x^2} + 2x}}{{{x^3} - 1}} - \frac{1}{{{x^2} - x}} - \frac{1}{{{x^2} + x + 1}}\) (x ≠ 0, x ≠ 1).
Câu 3:
Cho biểu thức
\(P = \frac{{2x - 6}}{{{x^3} - 3{x^2} - x + 3}} + \frac{{2{x^2}}}{{1 - {x^2}}} - \frac{6}{{x - 3}}\) (x ≠ 3, x ≠ 1, x ≠ –1).
Rút gọn phân thức \(\frac{{2x - 6}}{{{x^3} - 3{x^2} - x + 3}}\).
Câu 4:
Rút gọn biểu thức: \(Q = \frac{{18}}{{\left( {x - 3} \right)\left( {{x^2} - 9} \right)}} - \frac{3}{{{x^2} - 6x + 9}} - \frac{x}{{{x^2} - 9}}\).
Câu 5:
\(\frac{1}{{2x - 3}} - \frac{{13}}{{\left( {2x - 3} \right)\left( {4x + 7} \right)}}\).
Câu 6:
Chứng minh rằng nếu a, b, c ≠ 0, a + b + c = 0 thì \(\frac{1}{{ab}} + \frac{1}{{bc}} + \frac{1}{{ca}} = 0\).
Câu 7:
Rút gọn biểu thức \(P = \frac{{{x^4}}}{{1 - x}} + {x^3} + {x^2} + x + 1\).
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận