Câu hỏi:

13/07/2024 739

Một tàu chở hàng đi từ cảng A đến cảng B cách nhau 900 km với vận tốc không đổi là x (km/h). Khi đi được \(\frac{1}{3}\) quãng đường thì một động cơ của tàu bị hỏng nên tàu chỉ còn chạy với vận tốc 12 km/h trong suốt 3 giờ tàu sửa chữa động cơ. Để về cảng B không muộn hơn dự định, tàu phải tăng vận tốc thêm 5 km/h. Viết phân thức tính thời gian thực tế để tàu đi từ cảng A đến cảng B.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Quãng đường tàu đi với vận tốc x (km/h) là: \(900.\frac{1}{3}\)= 300 (km).

Thời gian tàu đi với vận tốc x (km/h) là: \(\frac{{300}}{x}\) (giờ).

Quãng đường tàu đi với vận tốc 12 km/h là: 12 . 3 = 36 (km).

Quãng đường còn lại dài: 900 – 300 – 36 = 564 (km).

Vận tốc tàu đi trên quãng đường 564 km là: x + 5 (km/h).

Thời gian tàu đi quãng đường 564 km là: \(\frac{{564}}{{x + 5}}\) (giờ).

Thời gian thực tế tàu đi là:

\(\frac{{300}}{x} + 3 + \frac{{564}}{{x + 5}} = \frac{{300\left( {x + 5} \right)}}{{x\left( {x + 5} \right)}} + \frac{{3x\left( {x + 5} \right)}}{{x\left( {x + 5} \right)}} + \frac{{564x}}{{x\left( {x + 5} \right)}}\)

\( = \frac{{300x + 1500 + 3{x^2} + 15x + 564x}}{{x\left( {x + 5} \right)}}\)

\( = \frac{{3{x^2} + 879x + 1500}}{{x\left( {x + 5} \right)}}\) (giờ).

Vậy phân thức tính thời gian thực tế để tàu đi từ cảng A đến cảng B là:

\(\frac{{3{x^2} + 879x + 1500}}{{x\left( {x + 5} \right)}}\) giờ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho biểu thức

\(P = \frac{{2x - 6}}{{{x^3} - 3{x^2} - x + 3}} + \frac{{2{x^2}}}{{1 - {x^2}}} - \frac{6}{{x - 3}}\) (x ≠ 3, x ≠ 1, x ≠ –1).

Rút gọn phân thức \(\frac{{2x - 6}}{{{x^3} - 3{x^2} - x + 3}}\).

Xem đáp án » 13/07/2024 2,234

Câu 2:

Tính:

 \(\frac{{5x + {y^2}}}{{{x^2}y}} - \frac{{5y - {x^2}}}{{x{y^2}}}\);

Xem đáp án » 13/07/2024 2,192

Câu 3:

Rút gọn biểu thức \(P = \frac{{{x^2} + 2x}}{{{x^3} - 1}} - \frac{1}{{{x^2} - x}} - \frac{1}{{{x^2} + x + 1}}\) (x ≠ 0, x ≠ 1).

Xem đáp án » 13/07/2024 2,178

Câu 4:

Rút gọn biểu thức: \(Q = \frac{{18}}{{\left( {x - 3} \right)\left( {{x^2} - 9} \right)}} - \frac{3}{{{x^2} - 6x + 9}} - \frac{x}{{{x^2} - 9}}\).

Xem đáp án » 13/07/2024 1,610

Câu 5:

Tính các hiệu sau:

\(\frac{1}{{2x - 3}} - \frac{{13}}{{\left( {2x - 3} \right)\left( {4x + 7} \right)}}\).

Xem đáp án » 13/07/2024 1,218

Câu 6:

Rút gọn biểu thức \(P = \frac{{{x^4}}}{{1 - x}} + {x^3} + {x^2} + x + 1\).

Xem đáp án » 13/07/2024 1,118

Câu 7:

Cho biểu thức \(P = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\). Chứng minh rằng x, y thay đổi luôn thỏa mãn điều kiện 3y – x = 6 thì P có giá trị không đổi.

Xem đáp án » 13/07/2024 1,063

Bình luận


Bình luận