Câu hỏi:
13/07/2024 1,015Cho hai hình hộp chữ nhật bằng nhau cùng có thể tích 200 cm3 và một hình hộp chữ nhật có thể tích 500 cm3 sắp xếp như trong hình bên (độ dài các cạnh hình hộp được tính bằng đơn vị cm). Viết các phân thức biểu thị độ dài (tính bằng cm) của các đoạn thẳng AC và DE.
Quảng cáo
Trả lời:
Gọi y (cm) là độ dài đoạn thẳng DE. (y > 0).
Ta có: AB = DE + EF
Vì hình hộp chữ nhật 200 cm3 có diện tích đáy là: (x + 1)x (cm2), từ đó suy ra chiều cao EF = \(\frac{{200}}{{x\left( {x + 1} \right)}}\) (cm).
Vì hình hộp chữ nhật 500 cm3 có diện tích đáy là: (x + 2)x (cm2), từ đó suy ra chiều cao AB = \(\frac{{500}}{{x\left( {x + 2} \right)}}\) (cm).
Vì AB = DE + EF
Suy ra DE = AB – EF = \(\frac{{500}}{{x\left( {x + 2} \right)}}\) – \(\frac{{200}}{{x\left( {x + 1} \right)}}\)
= \(\frac{{500\left( {x + 1} \right)}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}} - \frac{{200\left( {x + 2} \right)}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\)
= \(\frac{{500\left( {x + 1} \right) - 200\left( {x + 2} \right)}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\)
\( = \frac{{500x + 500 - 200x - 400}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\)
\( = \frac{{300x + 100}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\).
Ta lại có:
CB = EF = \(\frac{{200}}{{x\left( {x + 1} \right)}}\) (cm) (vì hai hình hộp chữ nhật bằng nhau có cùng thể tích 200 cm2).
AC = CB + AB = \(\frac{{200}}{{x\left( {x + 1} \right)}}\) + \(\frac{{500}}{{x\left( {x + 2} \right)}}\)
= \(\frac{{500\left( {x + 1} \right)}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}} + \frac{{200\left( {x + 2} \right)}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\)
= \(\frac{{500\left( {x + 1} \right) + 200\left( {x + 2} \right)}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\)
\( = \frac{{500x + 500 + 200x + 400}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\)
\( = \frac{{700x + 900}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\).
Vậy phân thức biểu diễn độ dài độ dài các đoạn thẳng DE và AC là
DE =\(\frac{{300x + 100}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\) (cm) và AC = \(\frac{{700x + 900}}{{x\left( {x + 1} \right)\left( {x + 2} \right)}}\) (cm).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính:
\(\frac{{5x + {y^2}}}{{{x^2}y}} - \frac{{5y - {x^2}}}{{x{y^2}}}\);
Câu 2:
Rút gọn biểu thức \(P = \frac{{{x^2} + 2x}}{{{x^3} - 1}} - \frac{1}{{{x^2} - x}} - \frac{1}{{{x^2} + x + 1}}\) (x ≠ 0, x ≠ 1).
Câu 3:
Cho biểu thức
\(P = \frac{{2x - 6}}{{{x^3} - 3{x^2} - x + 3}} + \frac{{2{x^2}}}{{1 - {x^2}}} - \frac{6}{{x - 3}}\) (x ≠ 3, x ≠ 1, x ≠ –1).
Rút gọn phân thức \(\frac{{2x - 6}}{{{x^3} - 3{x^2} - x + 3}}\).
Câu 4:
Rút gọn biểu thức: \(Q = \frac{{18}}{{\left( {x - 3} \right)\left( {{x^2} - 9} \right)}} - \frac{3}{{{x^2} - 6x + 9}} - \frac{x}{{{x^2} - 9}}\).
Câu 5:
\(\frac{1}{{2x - 3}} - \frac{{13}}{{\left( {2x - 3} \right)\left( {4x + 7} \right)}}\).
Câu 6:
Chứng minh rằng nếu a, b, c ≠ 0, a + b + c = 0 thì \(\frac{1}{{ab}} + \frac{1}{{bc}} + \frac{1}{{ca}} = 0\).
Câu 7:
Rút gọn biểu thức \(P = \frac{{{x^4}}}{{1 - x}} + {x^3} + {x^2} + x + 1\).
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận