Câu hỏi:
13/07/2024 1,243
Cho hai phân thức: \(P = \frac{1}{{2{x^2} + 7x - 15}}\) và \(Q = \frac{1}{{{x^2} + 3x - 10}}\). Có thể quy đồng mẫu thức hai phân thức đã cho với mẫu thức chung là M = 2x3 + 3x2 – 29x + 30 được không ? Vì sao?
Cho hai phân thức: \(P = \frac{1}{{2{x^2} + 7x - 15}}\) và \(Q = \frac{1}{{{x^2} + 3x - 10}}\). Có thể quy đồng mẫu thức hai phân thức đã cho với mẫu thức chung là M = 2x3 + 3x2 – 29x + 30 được không ? Vì sao?
Câu hỏi trong đề: Giải SBT Toán 8 KNTT Ôn tập chương 6 có đáp án !!
Quảng cáo
Trả lời:
Ta có:
\(P = \frac{1}{{2{x^2} + 7x - 15}} = \frac{1}{{2{x^2} + 10x - 3x - 15}} = \frac{1}{{\left( {2{x^2} + 10x} \right) - \left( {3x + 15} \right)}}\)
\( = \frac{1}{{2x\left( {x + 5} \right) - 3\left( {x + 5} \right)}} = \frac{1}{{\left( {2x - 3} \right)\left( {x + 5} \right)}}\).
\(\begin{array}{l}Q = \frac{1}{{{x^2} + 3x - 10}} = \frac{1}{{{x^2} + 5x - 2x - 10}} = \frac{1}{{\left( {{x^2} + 5x} \right) - \left( {2x + 10} \right)}}\\ = \frac{1}{{x\left( {x + 5} \right) - 2\left( {x + 5} \right)}} = \frac{1}{{\left( {x - 2} \right)\left( {x + 5} \right)}}\end{array}\)
Do đó, mẫu thức chung là: (x – 2)(2x – 3)(x + 5) = 2x3 + 3x2 – 29x + 30 = M.
Vì vậy, có thể quy đồng mẫu thức hai phân thức đã cho với mẫu thức chung là M.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Điều kiện xác định của biểu thức P là x ≠ 0 và x ≠ – 2.
\(P = \frac{{{{\left( {x + 2} \right)}^2}}}{x}.\left( {1 - \frac{{{x^2}}}{{x + 2}}} \right) - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{{{\left( {x + 2} \right)}^2}}}{x}.\left( {\frac{{x + 2}}{{x + 2}} - \frac{{{x^2}}}{{x + 2}}} \right) - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{{{\left( {x + 2} \right)}^2}}}{x}.\left( {\frac{{x + 2 - {x^2}}}{{x + 2}}} \right) - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{{{\left( {x + 2} \right)}^2}}}{x}.\frac{{ - {x^2} + x + 2}}{{x + 2}} - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{\left( {x + 2} \right)\left( { - {x^2} + x + 2} \right)}}{x} - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{ - {x^3} + {x^2} + 2x - 2{x^2} + 2x + 4}}{x} - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{ - {x^3} - {x^2} + 4x + 4}}{x} - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{ - {x^3} - {x^2} + 4x + 4 - {x^2} - 6x - 4}}{x}\)
\( = \frac{{ - {x^3} - 2{x^2} - 2x}}{x}\)
\( = - {x^2} - 2x - 2\).
Lời giải
Với a ≠ 0, y ≠ x, y ≠ –x, ta có:
\(P = \frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ay - ax} \right)}}\)\( = \frac{{\left( {x - y} \right)\left( {x + y} \right)}}{{\left( {x + y} \right)a\left( {y - x} \right)}}\)
\( = \frac{{ - \left( {x - y} \right)\left( {x + y} \right)}}{{a\left( {x + y} \right)\left( {x - y} \right)}}\)\( = \frac{{ - 1}}{a}\).
Do đó, giá trị của P không phụ thuộc vào x, y mà chỉ phụ thuộc vào a.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.