Câu hỏi:
13/07/2024 1,159Cho tam giác nhọn ABC, kẻ trung tuyển AM (M ∈ BC). Gọi I là trung điểm của AM, đường thẳng CI cắt AB tại E. Từ M kẻ đường thẳng song song với CE cắt AB tại F. Chứng minh:
AE = \[\frac{1}{3}\]AB;
Quảng cáo
Trả lời:
Xét ∆AMF, ta có IA = IM và EI // MF (vì I ∈ CE) nên EA = EF.
Suy ra EA = EF = FB mà EA + EF + FB = AB.
Vậy AE = \[\frac{1}{3}\]AB.
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác nhọn ABC có M, N lần lượt là trung điểm của AB, AC.
Gọi E là trung điểm của BC và I là giao điểm của AE với MN. Chứng minh I là trung điểm của MN.
Câu 2:
Cho tam giác ABC có M, N lần lượt là trung điểm của AC, BC.
Chứng minh tứ giác AMNB là hình thang.
Câu 3:
Cho tam giác nhọn ABC có M, N lần lượt là trung điểm của AB, AC.
Chứng minh tứ giác BMNC là hình thang.
Câu 4:
Cho hình thang ABCD (AB // CD). Gọi M, N, P, Q lần lượt là trung điểm của AD, BC, BD, AC. Chứng minh bốn điểm M, N, P, Q thẳng hàng.
Câu 5:
Cho tam giác ABC, hai đường trung tuyến EM và CN cắt nhau tại G (M ∈ AC, N ∈ AB). Gọi D, E lần lượt là trung điểm của GB, GC. Chứng minh:
MN // DE;
Câu 6:
Cho tam giác ABC có M, N lần lượt là trung điểm của AC, BC.
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
10 Bài tập Nhận biết hai hình đồng dạng, hai hình đồng dạng phối cảnh (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận