Câu hỏi:
13/07/2024 1,470
Cho hình thang ABCD (AB // CD). Gọi M, N, P, Q lần lượt là trung điểm của AD, BC, BD, AC. Chứng minh bốn điểm M, N, P, Q thẳng hàng.
Cho hình thang ABCD (AB // CD). Gọi M, N, P, Q lần lượt là trung điểm của AD, BC, BD, AC. Chứng minh bốn điểm M, N, P, Q thẳng hàng.
Quảng cáo
Trả lời:

• Xét ∆ABD, ta có MA = MD và PB = PD nên MP là đường trung bình của ∆ABD.
Suy ra MP //AB mà AB // CD nên MP // CD.
• Xét ∆ADC, ta có MA = MD và QA = QC nên MQ là đường trung bình của ∆ADC.
Suy ra MQ // CD.
• Xét ∆BCD, ta có PB = PD và NB = NC nên BN là đường trung bình của ∆BCD.
Suy ra PN // CD.
Qua điểm \(M \notin CD\) có MP // CD và MQ // CD, suy ra M, P, Q thẳng hàng. (1)
Qua điểm \(P \notin CD\) có MP // CD và PN // CD, suy ra M, P, N thẳng hàng. (2)
Từ (1) và (2) suy ra bốn điểm M, N, P, Q thẳng hàng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Xét ∆ABE, ta có MA = MB và MI // BE (vì I ∈ MN, E ∈ BC) nên IA = IE.
Do đó MI là đường trung bình của ∆ABE, suy ra MI = \[\frac{{BE}}{2}\].
Tương tự, ta có IN = \[\frac{{EC}}{2}\].
Mặt khác BE = EC, suy ra MI = IN.
Vậy I là trung điểm của MN.
Lời giải

Xét ∆ABC, ta có MA = MC và NB = NC nên MN là đường trung bình của ∆ABC.
Suy ra MN // AB (1)
Tứ giác AMNB có MN // AB nên AMNB là hình thang.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.