Câu hỏi:
11/07/2024 1,553
Cho hình bình hành ABCD. Gọi E và F theo thứ tự là trung điểm của AB và CD
a) Chứng minh rằng AF // CE.
b) Gọi M, N theo thứ tự là giao điểm của BD và AF, CE. Chứng minh rằng DM = MN = NB.
Cho hình bình hành ABCD. Gọi E và F theo thứ tự là trung điểm của AB và CD
a) Chứng minh rằng AF // CE.
b) Gọi M, N theo thứ tự là giao điểm của BD và AF, CE. Chứng minh rằng DM = MN = NB.
Quảng cáo
Trả lời:

a) Ta có: AB // CD và AB = CD vì ABCD là hình bình hành
Nên AE // CF và AE = CF =
Suy ra: AECF là hình bình hành
Vậy AF // CE
b) Xét ΔAEM có E là trung điểm của AB
EN // AM
Do đó N là trung điểm của BM
⇒ BN = NM (1)
Xét ΔDNC có F là trung điểm của DC
FM // NC
Do đó: M là trung điểm của DN
⇒ DM = MN (2)
Từ (1) và (2) suy ra DM = MN = NB.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có: DF // AC nên:
Suy ra: tam giác DBF cân tại D
b) Từ câu a ta có: DB = DF
Mà DB = CE theo giả thiết nên DF = CE
Lại có: DF // AC nên DF // CE
Xét tứ giác DCEF có: DF // CE và DF = CE
Vậy DCEF là hình bình hành.
Lời giải

a) Xét tứ giác AEHF có:
Nên AEHF là hình chữ nhật
Suy ra: AH = EF
b) Xét tam giác AHE và tam giác AHB có:
chung
⇒ ∆AEH ∽ ∆AHB (g.g)
⇒
⇒ AE = .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.