Cho x, y, z khác 0 và x khác y khác z thỏa mãn x2 – xy = y2 – yz = z2 – zx = a.
a) Chứng minh rằng a khác 0.
b) Chứng minh: .
Cho x, y, z khác 0 và x khác y khác z thỏa mãn x2 – xy = y2 – yz = z2 – zx = a.
a) Chứng minh rằng a khác 0.
b) Chứng minh: .
Quảng cáo
Trả lời:
a) a = x2 – xy = x(x – y)
Vì x khác 0 vì x khác y nên x – y ≠ 0
Suy ra: x(x – y) ≠ 0
Vậy a ≠ 0.
b) Ta có:
Lấy (3) trừ (1): 2xy = xz + yz – z2 + 2x2 – y2
Lấy (3) trừ (2): 2zx = xy + yz + 2z2 – x2 – y2
Lấy (2) trừ (1): 2yz = 2y2 + xy + xz – x2 – z2
Cộng lại ta được: yz + xz + xy = 0 do đó: .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có: DF // AC nên:
Suy ra: tam giác DBF cân tại D
b) Từ câu a ta có: DB = DF
Mà DB = CE theo giả thiết nên DF = CE
Lại có: DF // AC nên DF // CE
Xét tứ giác DCEF có: DF // CE và DF = CE
Vậy DCEF là hình bình hành.
Lời giải

a) Xét tứ giác AEHF có:
Nên AEHF là hình chữ nhật
Suy ra: AH = EF
b) Xét tam giác AHE và tam giác AHB có:
chung
⇒ ∆AEH ∽ ∆AHB (g.g)
⇒
⇒ AE = .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.