Câu hỏi:

15/02/2024 306 Lưu

Cho tam giác ABC có AB = 6, AC = 8, A^=100° . Tính độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét tam giác ABC, có:

BC2 = AB2 + AC2 – 2.AB.AC.cosA (định lí côsin)

BC2 = 62 + 82 – 2.6.8.cos100°

BC2 ≈ 116,7

BC ≈ 10,8.

Áp dụng định lí sin trong tam giác ABC, ta có: BCsinA=2R

R = 10,82sin100°5,5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC cân tại A lấy điểm D bất kì trên AB, lấy điểm E trên tia đối của tia CA sao cho CE = BD. Từ D kẻ đường thẳng song song với AC cắt BC tại F (ảnh 1)

a) Ta có: DF // AC nên: DFB^=ACB^=B^

Suy ra: tam giác DBF cân tại D

b) Từ câu a ta có: DB = DF

Mà DB = CE theo giả thiết nên DF = CE

Lại có: DF // AC nên DF // CE

Xét tứ giác DCEF có: DF // CE và DF = CE

Vậy DCEF là hình bình hành.

Lời giải

Cho tam giác vuông ABC vuông ở A có đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên AB và AC. a. So sánh AH và EF. b. Tính độ dài HF biết AB = 6 cm, BC = 10 cm và BH = 3,6 cm. (ảnh 1)

a) Xét tứ giác AEHF có: A^=E^=F^=90°

Nên AEHF là hình chữ nhật

Suy ra: AH = EF

b) Xét tam giác AHE và tam giác AHB có:

A^ chung

AEH^=AHB^=90°

∆AEH ∆AHB (g.g)

 AEAH=AHAB

AE = AH2AB=AB2BH2AB=623,626=3,84cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP