Câu hỏi:
15/02/2024 464
Gọi M là trung điểm của đoạn thẳng AB. Trên 2 nửa phẳng đối nhau bờ AB lần lượt vẽ 2 tia Ax, By vuông góc AB. Trên Ax lấy điểm P, Trên Ay lấy Q sao cho AP = BQ. Chứng minh P, Q, M thẳng hàng.
Gọi M là trung điểm của đoạn thẳng AB. Trên 2 nửa phẳng đối nhau bờ AB lần lượt vẽ 2 tia Ax, By vuông góc AB. Trên Ax lấy điểm P, Trên Ay lấy Q sao cho AP = BQ. Chứng minh P, Q, M thẳng hàng.
Quảng cáo
Trả lời:

Xét tam giác APM và tam giác BQM có:
AP = BQ (giả thiết)
AM = MB (giả thiết)
⇒ ∆APM = ∆BQM (c.g.c)
⇒ (2 góc tương ứng)
Mà ta có:
⇒
Hay P, Q, M thẳng hàng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có: DF // AC nên:
Suy ra: tam giác DBF cân tại D
b) Từ câu a ta có: DB = DF
Mà DB = CE theo giả thiết nên DF = CE
Lại có: DF // AC nên DF // CE
Xét tứ giác DCEF có: DF // CE và DF = CE
Vậy DCEF là hình bình hành.
Lời giải

a) Xét tứ giác AEHF có:
Nên AEHF là hình chữ nhật
Suy ra: AH = EF
b) Xét tam giác AHE và tam giác AHB có:
chung
⇒ ∆AEH ∽ ∆AHB (g.g)
⇒
⇒ AE = .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.