Câu hỏi:
12/07/2024 371Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt P =
Có a, b, c là các số thực dương, theo bất đẳng thức AM - GM có:
Suy ra: P =
Mà a + b + c + ab + bc + ac = 6
⇒ P ≥ 2(a2 + b2 + c2) + a + b + c – 6
Có (a – b)2 + (b – c)2 + (c – a)2 ≥ 0
⇒ 2(a2 + b2 + c2) ≥ 2(ab + bc + ca)
Suy ra: P ≥
Có ab + bc + ca ≤ a2 + b2 + c2
⇒ 3(ab + bc + ca) ≤ (a + b + c)2
Do đó: 6 = a + b + c + ab + bc + ac ≤ a + b + c +
⇒ + (a + b + c) – 6 ≥ 0
⇒ a + b + c ≥ 3(a + b + c)2 ≥ 9
Suy ra: P ≥
Dấu “=” xảy ra khi a = b = c.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A lấy điểm D bất kì trên AB, lấy điểm E trên tia đối của tia CA sao cho CE = BD. Từ D kẻ đường thẳng song song với AC cắt BC tại F
a) Tam giác DBF là tam giác gì?
b) Chứng minh tứ giác DCEF là hình bình hành.
Câu 3:
Một khu vườn hình vuông có cạnh bằng 20m, người ta làm một lối đi xung quanh vườn có bể rộng x (m).
a) Viết biểu thức biểu diễn diện tích đất còn lại của khu vườn.
b) Tìm x biết diện tích dùng làm lối đi là 144m2.
Câu 5:
Bác Bình gửi tiết kiệm 500 triệu đồng kì hạn 1 tháng với lãi suất 6% một năm theo hình thức lãi suất kép. Nếu sau đúng một năm bác Bình mới đến ngân hàng rút tiền thì số tiền lãi là bao nhiêu?
Câu 6:
Cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến. Chứng minh:
a. Tam giác ADE cân tại A.
b. ∆ABD = ∆ACE.
c. BCDE là hình thang cân.
về câu hỏi!