Cho tam giác ABC có đường cao AH và BD cắt nhau tại I.
a) Chứng minh 4 điểm C, D, I, H cùng thuộc 1 đường tròn.
b) Chứng minh 4 điểm A, B, H, D cùng thuộc 1 đường tròn.
c) Tính bán kính đường tròn đi qua 4 điểm C, D, H, I nếu biết CH = 4cm và = 30°.
Cho tam giác ABC có đường cao AH và BD cắt nhau tại I.
a) Chứng minh 4 điểm C, D, I, H cùng thuộc 1 đường tròn.
b) Chứng minh 4 điểm A, B, H, D cùng thuộc 1 đường tròn.
c) Tính bán kính đường tròn đi qua 4 điểm C, D, H, I nếu biết CH = 4cm và = 30°.
Quảng cáo
Trả lời:


a) Xét tam giác DIC vuông tại D (BD ⊥ AC)
⇒ D, I, C cùng thuộc đường tròn đường kính IC
Xét tam giác HIC vuông tại H (AH ⊥ BC)
⇒ H, I, C cùng thuộc đường tròn đường kính IC
Vậy D, I, C, H cùng thuộc đường tròn đường kính IC
b) Xét tam giác ABH vuông tại H (AH ⊥ BC)
⇒ A, B, H cùng thuộc đường tròn đường kính AB
Xét tam giác ABD vuông tại D (BD ⊥ AC)
⇒ A, B, D cùng thuộc đường tròn đường kính AB
Vậy A, B, H, D cùng thuộc đường tròn đường kính AB
c) Gọi M là giao điểm của CI và AB
Xét tam giác BAC có: AH và BD là đường cao, AH ∩ BD ={I}
Nên I là trực tâm của tam giác BAC
Vậy AM là đường cao thứ 3 của tam giác ABC
Xét ∆ABH và ∆CBM có:
chung
⇒ ∆ABH ~ ∆CBM (g.g)
⇒ = 30°
Xét ∆HCI vuông tại H có: cos
Mà đường tròn đi qua D, I, C, H là đường tròn đường kính IC
Suy ra bán kính đường tròn là
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có: DF // AC nên:
Suy ra: tam giác DBF cân tại D
b) Từ câu a ta có: DB = DF
Mà DB = CE theo giả thiết nên DF = CE
Lại có: DF // AC nên DF // CE
Xét tứ giác DCEF có: DF // CE và DF = CE
Vậy DCEF là hình bình hành.
Lời giải

a) Xét tứ giác AEHF có:
Nên AEHF là hình chữ nhật
Suy ra: AH = EF
b) Xét tam giác AHE và tam giác AHB có:
chung
⇒ ∆AEH ∽ ∆AHB (g.g)
⇒
⇒ AE = .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.