Câu hỏi:
15/02/2024 567Cho tam giác ABC vuông tại A, đường cao AH biết BH = 3.6 cm; CH = 6.4 cm
a) Tính AH, AB và số đo góc .
b) Gọi M và N lần lượt là hình chiếu của H lên AB, AC. Chứng minh AM.AB = AN.AC và tam giác AMN đồng dạng với tam giác ACB.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Áp dụng hệ thức lượng trong tam giác vuông ta có:
AH2 = BH.CH = 3,6 . 6,4 = 23,04
Suy ra: AH = 4,8 cm
AB2 = AH2 + HB2 = 4,82 + 3,62
⇒ AB = 6 cm
AC =
⇒
b) Xét tam giác AMH và tam giác AHB có:
Chung
⇒ ∆AMH ~ ∆AHB (g.g)
⇒
⇒ AM.AB = AH2 (1)
Chứng minh tương tự: ∆ANH ~ ∆AHC (g.g)
⇒
⇒ AN.AC = AH2 (2)
Từ (1) và (2): AM.AB = AN.AC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A lấy điểm D bất kì trên AB, lấy điểm E trên tia đối của tia CA sao cho CE = BD. Từ D kẻ đường thẳng song song với AC cắt BC tại F
a) Tam giác DBF là tam giác gì?
b) Chứng minh tứ giác DCEF là hình bình hành.
Câu 3:
Một khu vườn hình vuông có cạnh bằng 20m, người ta làm một lối đi xung quanh vườn có bể rộng x (m).
a) Viết biểu thức biểu diễn diện tích đất còn lại của khu vườn.
b) Tìm x biết diện tích dùng làm lối đi là 144m2.
Câu 5:
Bác Bình gửi tiết kiệm 500 triệu đồng kì hạn 1 tháng với lãi suất 6% một năm theo hình thức lãi suất kép. Nếu sau đúng một năm bác Bình mới đến ngân hàng rút tiền thì số tiền lãi là bao nhiêu?
Câu 6:
Cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến. Chứng minh:
a. Tam giác ADE cân tại A.
b. ∆ABD = ∆ACE.
c. BCDE là hình thang cân.
về câu hỏi!