Câu hỏi:

11/07/2024 456

Cho khối chóp S.ABCD đáy là hình chữ nhật, cạnh AB = a, AD = 2a. Hình chiếu vuông góc của S xuống ABCD là trung điểm H của AB. Biết SD = 3a. Tính thể tích khối chóp S.ABCD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho khối chóp S.ABCD đáy là hình chữ nhật, cạnh AB = a, AD = 2a. Hình chiếu vuông góc của S xuống ABCD là trung điểm H của AB. Biết SD = 3a. Tính thể tích khối chóp S.ABCD. (ảnh 1)

Vì SH vuông góc với đáy nên SH HD

Áp dụng định lý Pytago vào tam giác AHD, SHD có:

HD2 = AH2 + AD212AB2+AD2=a22+2a2=a24+4a2=17a24

HD = a172

SD2 = SH2 + HD2

SH = SD2SH2=9a217a24=a192

Ta có VS.ABCD = 13.SH.SABCD=13.a192.2a.a=a3193.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC cân tại A lấy điểm D bất kì trên AB, lấy điểm E trên tia đối của tia CA sao cho CE = BD. Từ D kẻ đường thẳng song song với AC cắt BC tại F (ảnh 1)

a) Ta có: DF // AC nên: DFB^=ACB^=B^

Suy ra: tam giác DBF cân tại D

b) Từ câu a ta có: DB = DF

Mà DB = CE theo giả thiết nên DF = CE

Lại có: DF // AC nên DF // CE

Xét tứ giác DCEF có: DF // CE và DF = CE

Vậy DCEF là hình bình hành.

Lời giải

Cho tam giác vuông ABC vuông ở A có đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên AB và AC. a. So sánh AH và EF. b. Tính độ dài HF biết AB = 6 cm, BC = 10 cm và BH = 3,6 cm. (ảnh 1)

a) Xét tứ giác AEHF có: A^=E^=F^=90°

Nên AEHF là hình chữ nhật

Suy ra: AH = EF

b) Xét tam giác AHE và tam giác AHB có:

A^ chung

AEH^=AHB^=90°

∆AEH ∆AHB (g.g)

 AEAH=AHAB

AE = AH2AB=AB2BH2AB=623,626=3,84cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP