Câu hỏi:
28/02/2024 6,205Cho hình lăng trụ tam giác ABC.A'B'C' có các cạnh bên hợp với đáy những góc bằng 60°, đáy ABC là tam giác đều và A' cách đều A, B, C. Tính khoảng cách giữa hai đáy của hình lăng trụ.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Vì ∆ABC đều và AA' = A'B = A'C Þ A'.ABC là hình chóp đều.
Gọi A'H là chiều cao của lăng trụ, suy ra H là trọng tâm DABC.
Khi đó AH là hình chiếu của AA' trên mặt phẳng ABC Þ .
Vì (ABC) // (A'B'C') nên d((ABC), (A'B'C')) = A'H.
Xét DAA'H vuông tại H, có .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Khi đó khoảng cách giữa đường thẳng AB và mặt phẳng (SCD) bằng
Câu 2:
Cho hình lăng trụ tứ giác đều ABCD. A'B'C'D' có cạnh đáy bằng a. Gọi M, N, P lần lượt là trung điểm của AD, DC, A'D'. Tính khoảng cách giữa hai mặt phẳng (MNP) và (ACC').
Câu 3:
Cho hình chóp tứ giác đều S.ABCD có AB = SA = 2a. Khoảng cách từ đường thẳng AB đến (SCD) bằng bao nhiêu?
Câu 4:
Cho hình lăng trụ tam giác ABC.A'B'C' có cạnh bên bằng a. Các cạnh bên của lăng trụ tạo với mặt đáy góc 60°. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) là trung điểm của BC. Khoảng cách giữa hai mặt đáy của lăng trụ bằng bao nhiêu?
Câu 5:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy và SA = 2a, M là trung điểm của SD. Tính khoảng cách giữa đường thẳng SB và mặt phẳng (ACM).
Câu 6:
về câu hỏi!