Câu hỏi:
28/02/2024 340Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = 4, AD = 3. Mặt phẳng (ACD') tạo với mặt đáy một góc 60°. Tính khoảng cách giữa hai mặt đáy của hình hộp.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Kẻ DO ^ AC tại O (1).
Mà DD' ^ (ABCD) Þ DD' ^ AC (2).
Từ (1) và (2) Þ AC ^ (DD'O) Þ AC ^ D'O.
Do đó góc giữa hai mặt phẳng (ACD') và mặt phẳng (ABCD) chính là .
Xét DADC vuông tại D, có .
Vì (ABCD) // (A'B'C'D') nên d((ABCD), (A'B'C'D')) = DD'.
Xét DD'DO vuông tại D, ta có: .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình lăng trụ tam giác ABC.A'B'C' có các cạnh bên hợp với đáy những góc bằng 60°, đáy ABC là tam giác đều và A' cách đều A, B, C. Tính khoảng cách giữa hai đáy của hình lăng trụ.
Câu 2:
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Khi đó khoảng cách giữa đường thẳng AB và mặt phẳng (SCD) bằng
Câu 3:
Cho hình lăng trụ tứ giác đều ABCD. A'B'C'D' có cạnh đáy bằng a. Gọi M, N, P lần lượt là trung điểm của AD, DC, A'D'. Tính khoảng cách giữa hai mặt phẳng (MNP) và (ACC').
Câu 4:
Cho hình chóp tứ giác đều S.ABCD có AB = SA = 2a. Khoảng cách từ đường thẳng AB đến (SCD) bằng bao nhiêu?
Câu 5:
Cho hình lăng trụ tam giác ABC.A'B'C' có cạnh bên bằng a. Các cạnh bên của lăng trụ tạo với mặt đáy góc 60°. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) là trung điểm của BC. Khoảng cách giữa hai mặt đáy của lăng trụ bằng bao nhiêu?
Câu 6:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy và SA = 2a, M là trung điểm của SD. Tính khoảng cách giữa đường thẳng SB và mặt phẳng (ACM).
Câu 7:
về câu hỏi!