Câu hỏi:

28/02/2024 1,985

Cho hình lập phương ABCD.A'B'C'D' cạnh a. Khoảng cách giữa (ACB') và (DA'C') bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho hình lập phương ABCD.A'B'C'D' cạnh a. Khoảng cách giữa (ACB') và (DA'C') bằng (ảnh 1)

Vì (ACB') // (DA'C') nên ta có: d((ACB'), (DA'C')) = d(D, (ACB')) = d(B, (ACB')).

Vì BA = BC = BB' = a và AB' = B'C = AC =  nên hình chóp B. ACB' là hình chóp đều.

Gọi I là trung điểm AC, G là trọng tâm tam giác ACB'.

Khi đó d(B, (ACB')) = BG.

Vì tam giác ACB' đều nên B'I=a2.32=a62 .

Theo tính chất trọng tâm ta có: B'G=23B'I=a63 .

Trong tam giác vuông BGB' có: BG=BB'2B'G2=a26a29=a33.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Khi đó khoảng cách giữa đường thẳng AB và mặt phẳng (SCD) bằng (ảnh 1)

Gọi O là tâm hình vuông ABCD.

Vì S.ABCD là hình chóp tứ giác đều nên SO ^ (ABCD) SO ^ CD.

Kẻ OI ^ CD và OH ^ SI.

SO ^ CD và OI ^ CD nên CD ^ (SOI) CD ^ OH.

Lại có OH ^ SI nên OH ^ (SCD).

Do đó d(O, (SCD)) = OH.

Vì OI là đường trung bình DACD nên OI=AD2=a2 .

DSCD đều cạnh a nên SI=a32  .

Xét DSOI vuông tại O, có SO=SI2IO2=34a2a24=a22 ,

1OH2=1SO2+1OI2=2a2+4a2=6a2OH=a66.

 

Vì AB // CD nên AB // (SCD). Do đó d(AB, (SCD)) = d(A, (SCD)).

dA,(SCD)dO,(SCD)=CACO=2dA,(SCD)=2dO,(SCD) .

Do đó dA,(SCD)=a63 .

Lời giải

Đáp án đúng là: A

Cho hình lăng trụ tam giác ABC.A'B'C' có các cạnh bên hợp với đáy những góc bằng 60°, đáy ABC là tam giác đều và A' (ảnh 1)

Vì ∆ABC đều và AA' = A'B = A'C Þ A'.ABC là hình chóp đều.

Gọi A'H là chiều cao của lăng trụ, suy ra H là trọng tâm DABC.

Khi đó AH là hình chiếu của AA' trên mặt phẳng ABC Þ A'AH^=60° .

Vì (ABC) // (A'B'C') nên d((ABC), (A'B'C')) = A'H.

Xét DAA'H vuông tại H, có A'H=AH.tan60°=a333=a  .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP