Câu hỏi:
28/02/2024 1,985Quảng cáo
Trả lời:
Đáp án đúng là: C

Vì (ACB') // (DA'C') nên ta có: d((ACB'), (DA'C')) = d(D, (ACB')) = d(B, (ACB')).
Vì BA = BC = BB' = a và AB' = B'C = AC = nên hình chóp B. ACB' là hình chóp đều.
Gọi I là trung điểm AC, G là trọng tâm tam giác ACB'.
Khi đó d(B, (ACB')) = BG.
Vì tam giác ACB' đều nên .
Theo tính chất trọng tâm ta có: .
Trong tam giác vuông BGB' có: .Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D

Gọi O là tâm hình vuông ABCD.
Vì S.ABCD là hình chóp tứ giác đều nên SO ^ (ABCD) ⇒ SO ^ CD.
Kẻ OI ^ CD và OH ^ SI.
Vì SO ^ CD và OI ^ CD nên CD ^ (SOI) ⇒ CD ^ OH.
Lại có OH ^ SI nên OH ^ (SCD).
Do đó d(O, (SCD)) = OH.
Vì OI là đường trung bình DACD nên .
Vì DSCD đều cạnh a nên .
Xét DSOI vuông tại O, có ,
.
Vì AB // CD nên AB // (SCD). Do đó d(AB, (SCD)) = d(A, (SCD)).
Mà .
Do đó .
Lời giải
Đáp án đúng là: A

Vì ∆ABC đều và AA' = A'B = A'C Þ A'.ABC là hình chóp đều.
Gọi A'H là chiều cao của lăng trụ, suy ra H là trọng tâm DABC.
Khi đó AH là hình chiếu của AA' trên mặt phẳng ABC Þ .
Vì (ABC) // (A'B'C') nên d((ABC), (A'B'C')) = A'H.
Xét DAA'H vuông tại H, có .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.