Câu hỏi:

01/03/2024 1,106

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA=a3. Khoảng cách từ A đến mặt phẳng (SBC) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và  (ảnh 1)

SAABCDSABC BCAB nên BCSABSBCSAB

Kẻ AHSB tại H trong (SAB).

Khi đó: SABSBCSABSBC=SBTrong SAB,AHSBAHSBC.

Do đó dA,SBC=AH.

Xét ΔSAB vuông tại A, có 1AH2=1SA2+1AB2=13a2+1a2=43a2

AH=a32 . Do vậy dA,SBC=a32.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

limx+y=limx+x2x+1=1;limxy=limxx2x+1=1.

Do đó y = 1 là đường tiệm cận ngang của đồ thị hàm số.

Lời giải

Đáp án đúng là: D

Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau và SA=SB=SC. Gọi I là trung điểm của AB. Góc giữa SI và BC bằng? (ảnh 1)

Gọi K là trung điểm của AC.

Khi đó IK//BCSI,BC^=SI,IK^.

Ta có SI=12AB,SK=12AC,IK=12BC(tính chất đường trung tuyến trong tam giác vuông).

Do SA=SB=SCAB=BC=AC, khi đó SI=SK=IK hay ΔSIK là tam giác đều.

Vậy SI,BC^=SI,IK^=60°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP