Câu hỏi:

01/03/2024 1,268

Cho hàm số f(x) liên tục trên  thỏa mãn 0π4ftanxdx=3 01x2fxx2+1dx=1. Tính I=01fxdx.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Xét I1=0π4ftanxdx=3

Đặt t=tanxdt=1cos2xdx

I1=01ft.11+t2dt=01fx1+x2dx=3

Ta có:

01x2fxx2+1dx=10111x2+1fx dx=101fxdx01fxx2+1dx=1

01fxdx3=101fxdx=4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

limx+y=limx+x2x+1=1;limxy=limxx2x+1=1.

Do đó y = 1 là đường tiệm cận ngang của đồ thị hàm số.

Lời giải

Đáp án đúng là: D

Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau và SA=SB=SC. Gọi I là trung điểm của AB. Góc giữa SI và BC bằng? (ảnh 1)

Gọi K là trung điểm của AC.

Khi đó IK//BCSI,BC^=SI,IK^.

Ta có SI=12AB,SK=12AC,IK=12BC(tính chất đường trung tuyến trong tam giác vuông).

Do SA=SB=SCAB=BC=AC, khi đó SI=SK=IK hay ΔSIK là tam giác đều.

Vậy SI,BC^=SI,IK^=60°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP