Câu hỏi:

01/03/2024 2,430

Cho hai số phức z1,z2 thoả mãn đồng thời hai điều kiện sau z1=34,  z+1+mi=z+m+2i (trong đó m là tham số thực) và sao cho z1z2 là lớn nhất. Khi đó giá trị z1+z2 bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho hai số phức z1, z2 thoả mãn đồng thời hai điều kiện sau |z - 1|= căn 34, |z+1+mi|=|z+m + 2i|  (trong đó m là tham số thực)  (ảnh 1)

Đặt z=x+yi   (x,y). Khi đó z1=34x12+y2=34 (C).

Suy ra điểm biểu diễn của số phức z1,z2 nằm trên đường tròn (C) tâm I(1;0) bán kính R=34.

Lại có, z+1+mi=z+m+2ix+12+y+m2=x+m2+y+22

22mx+2m4y3=0 (d).

Suy ra điểm biểu diễn số phức z1,z2 nằm trên đường thẳng (d).

Gọi Ax0;y0 là điểm cố định mà đường thẳng (d) luôn đi qua. Khi đó, 22mx0+2m4y03=0,  m

2m(y0x0)+2x04y03=0,   m

y0x0=02x04y03=0x0=y0=32A32;32.

Ta có, IA=342<R nên điểm A nằm trong đường tròn (C).

Do đó đường thẳng (d) luôn cắt đường tròn (C) tại 2 điểm M, N và điểm M, N chính là điểm biểu diễn của số phức z1,z2.

Theo giả thiết thì z1z2=MN lớn nhất d IA .

Do đó z1+z2=OM+ON=2.OI=2.OI=2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tiệm cận ngang của đồ thị hàm số y=x2x+1 

Xem đáp án » 01/03/2024 21,162

Câu 2:

Cho hình chóp S.ABCSA, SB, SC đôi một vuông góc với nhau và SA=SB=SC. Gọi I là trung điểm của AB. Góc giữa SIBC bằng?

Xem đáp án » 01/03/2024 11,795

Câu 3:

Cho hàm số y = f(x) có đạo hàm  f'x=x2+2x trên . Có bao nhiêu giá trị nguyên của tham số m để hàm số gx= fx28x+m có 5 điểm cực trị dương?

Xem đáp án » 01/03/2024 9,618

Câu 4:

Cho hàm số y = f(x) có đồ thị là đường cong trong hình bên.

Cho hàm số y = f(x) có đồ thị là đường cong trong hình bên.   Hàm số đã cho nghịch biến trên khoảng nào dưới đây? (ảnh 1)
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 01/03/2024 7,289

Câu 5:

Cho hàm số y = f(x) có đồ thị là đường cong như trong hình vẽ. Số nghiệm của phương trình 4|f(x)| - 25 = 0 là:

Cho hàm số y = f(x) có đồ thị là đường cong như trong hình vẽ. Số nghiệm của phương trình 4|f(x)| - 25 = 0 là:   (ảnh 1)

Xem đáp án » 01/03/2024 5,358

Câu 6:

Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 69 quả màu xanh được đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu, khác số và có ít nhất một quả ghi số chẵn bằng

Xem đáp án » 01/03/2024 4,197

Câu 7:

Trong không gian với hệ tọa độ Oxyz tọa độ nào sau đây là tọa độ của một vectơ chỉ phương của đường thẳng Δ:x=2+4ty=16tz=9t,t?

Xem đáp án » 01/03/2024 3,768

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store