Câu hỏi:

12/07/2024 7,730

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Theo kế hoạch, một phân xưởng phải làm xong 900 sản phẩm trong một số ngày quy định. Thực tế, mỗi ngày phân xưởng đã làm được nhiều hơn 15 sản phẩm so với số sản phẩm phải làm trong một ngày theo kế hoạch. Vì thế 3 ngày trước khi hết thời hạn, phân xưởng đã làm xong 900 sản phẩm. Hỏi theo kế hoạch, mỗi ngày phân xưởng phải làm bao nhiêu sản phẩm? (Giả định rằng số sản phẩm mà phân xưởng làm được trong mỗi ngày là bằng nhau.)

2) Một khối gỗ dạng hình trụ có bán kính đáy là 30 cm và chiều cao là 120 cm Tính thể tích của khối gỗ đó (lấy π3,14).

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Gọi số sản phẩm mỗi ngày phân xưởng phải làm theo kế hoạch là x (sản phẩm) x*,  x<900.

Do đó, theo kế hoạch, thời gian phân xưởng làm xong 900 sản phẩm là 900x (ngày).

Thực tế, mỗi ngày, phân xưởng đã làm được nhiều hơn 15 sản phẩm so với số sản phẩm phải làm trong một ngày theo kế hoạch nên thực tế, số sản phẩm mỗi ngày phân xưởng phải làm là x+15 (sản phẩm).

Do đó, thực tế, thời gian phân xưởng làm xong 900 sản phẩm là900x+15 (ngày).

Vì phân xưởng đã làm xong 900 sản phẩm 3 ngày trước khi hết thời hạn nên ta có phương trình: 900x+15+3=900x

900x900x+15=31x1x+15=1300

x+15xxx+15=130015x2+15x=1300

x2+15x=4500x2+15x4500=0

x60x+75=0x=60x=75.

Đối chiếu điều kiện và thử lại ta thấy x=60 thỏa mãn.

Vậy số sản phẩm mỗi ngày phân xưởng phải làm theo kế hoạch là 60 sản phẩm.

2) Thể tích khối gỗ là V=πR2h3,14302120=339  120   cm3.

Vậy V339  120 cm3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O). Tiếp tuyến tại điểm A của đường tròn (O) cắt đường thẳng BC tại điểm S. Gọi I là chân đường vuông góc kẻ từ điểm O đến đường thẳng BC.

1) Chứng minh tứ giác SAOI là tứ giác nội tiếp.

2) Gọi HD lần lượt là chân các đường vuông góc kẻ từ điểm A đến các đường thẳng SOSC. Chứng minh OAH^=IAD^.

3) Vẽ đường cao CE của tam giác ABC. Gọi Q là trung điểm của đoạn thẳng BE . Đường thẳng QD cắt đường thẳng AH tại điểm K. Chứng minh BQBA=BDBI và đường thẳng CK song song với đường thẳng SO.

Xem đáp án » 12/07/2024 13,372

Câu 2:

Cho hai biểu thức A=x+2x B=2x3x1+3xx1 với x>0,x1.

1) Tính giá trị của biểu thức A khi x = 9                                                   

2) Chứng minh B=2xx+1.

3) Tìm tất cả giá trị của x để AB = 4.

Xem đáp án » 12/07/2024 4,145

Câu 3:

Cho hai số thực dương ab thỏa mãn a+b2. Chứng minh

a2a2+b+b2b2+a1.

Xem đáp án » 12/07/2024 3,228

Câu 4:

1) Giải hệ phương trình 2x33y=13x3+2y=8.

2) Trong mặt phẳng toạ độ Oxy, cho parabol P:y=x2 và đường thẳng d:y=m+2xm.

a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt.

b) Gọi x1 x2 là hoành độ các giao điểm của (d) (P). Tìm tất cả giá trị của m để 1x1+1x2=1x1+x22.

Xem đáp án » 12/07/2024 3,052

Bình luận


Bình luận