Câu hỏi:

13/07/2024 37,416

Để lập đội tuyển năng khiếu về bóng rổ của trường, thầy thể dục đưa ra quy định tuyển chọn như sau: mỗi bạn dự tuyển sẽ được ném 15 quả bóng vào rổ, quả bóng vào rổ được cộng 2 điểm; quả bóng ném ra ngoài bị trừ 1 điểm. Nếu bạn nào có số điểm từ 15 điểm trở lên thì sẽ được chọn vào đội tuyển. Hỏi một học sinh muốn được chọn vào đội tuyển thì phải ném ít nhất bao nhiêu quả vào rổ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x là số quả bóng học sinh cần ném vào rổ (0 ≤ x ≤ 15, x ℕ*).

Số quả bóng ném ra ngoài là: 15 – x (quả).

Ném vào rổ x quả bóng được cộng 2x (điểm).

Ném ra ngoài 15 – x quả bóng bị trừ 15 – x (điểm).

Vì vậy, sau khi ném 15 quả bóng thì học sinh đó sẽ có số điểm là:

2x – (15 – x) = 2x – 15 + x = 3x – 15 (điểm).

Theo bài, để được vào đội tuyển thì học sinh cần có số điểm từ 15 trở lên, nên ta có bất phương trình:

3x – 15 ≥ 15

3x ≥ 30

x ≥ 10.

Mà 0 ≤ x ≤ 15, x ℕ* nên học sinh đó cần phải ném vào rổ ít nhất là 10 quả bóng thì mới được chọn vào đội tuyển.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) (3x – 1)2 – (x + 2)2 = 0

(3x – 1 – x – 2)(3x – 1 + x + 2) = 0

(2x – 3)(4x + 1) = 0

2x – 3 = 0 hoặc 4x + 1 = 0

2x = 3 hoặc 4x = –1

x=32 hoặc x=14.

Vậy phương trình đã cho có nghiệm là x=32 hoặc x=14.

Lời giải

Tổng điểm của ba môn nghe, nói, đọc của Thanh khoảng: 6,7 . 3 = 20,1 ≈ 20 (do mỗi bài kiểm tra có điểm là số nguyên từ 0 đến 10).

Gọi x là điểm bài kiểm tra viết của Thanh (0 < x ≤ 10, x ℕ*).

Khi đó điểm trung bình bốn bài kiểm tra của Thanh là: 20+x4.

Để điểm trung bình cả 4 bài kiểm tra được từ 7,0 trở lên thì:

20+x47,0

20 + x ≥ 28

x ≥ 8.

Mà 0 < x ≤ 10, x ℕ* nên x {8; 9; 10}.

Vậy bài kiểm tra viết của Thanh cần được 8 điểm hoặc 9 điểm hoặc 10 điểm để điểm trung bình cả 4 bài kiểm tra được từ 7,0 trở lên.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay