Câu hỏi:

13/07/2024 21,159

Cho tam giác ABC có đường cao AH = 6 cm, B^=40°,  C^=35°. Tính độ dài các đoạn thẳng AB, BH, AC, BC (làm tròn kết quả đến hàng phần mười của centimét)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có đường cao AH = 6 cm, góc B= 40 độ , góc C = 35 độ (ảnh 1)

Xét ∆ABH vuông tại H, ta có:

sinB=AHAB, suy ra AB=AHsin40°=6sin40°9,3 (cm).

BH = AH.cotB = 6.cot40° ≈ 7,2 (cm).

Xét ∆ACH vuông tại H, ta có:

sinC=AHAC, suy ra AC=AHsin35°=6sin35°10,5 (cm). 

CH = AH.cotC = 6.cot35° ≈ 8,6 (cm).

Khi đó, BC = BH + HC ≈ 7,2 + 8,6 = 15,8 (cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A có góc B= 30 độ. Chứng minh AC = 1/2 BC (ảnh 1)

Xét ∆ABC vuông tại A, ta có: AC=BCsinB=BCsin30°=12BC.

Vậy AC=12BC.

Lời giải

Vì AH BC và BD BC nên AH // BD. Do đó ABD^=BAH^=28° (so le trong).

Khoảng cách BD từ chân tháp đến chân tòa nhà là: BD=ADcotABD^=68cot28°127,9 (m).

Do tứ giác ADBH có ADB^=AHB^=DBH^=90° nên ADBH là hình chữ nhật.

Suy ra AH = DB ≈ 127, 9 (m) và HB = AD = 68 (m).

Do ∆AHC vuông tại H, ta có CH=AH.tanCAH^127,9tan43°119,3 (m).

Chiều cao BC của tháp truyền hình là:  BC = BH + HC ≈ 68 + 119,3 = 187,3 (m).

Vậy khoảng cách BD từ chân tháp đến chân tòa nhà khoảng 127,9 mét và chiều cao BC của tháp truyền hình khoảng 187,3 mét.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP