Câu hỏi:
13/07/2024 21,159
Cho tam giác ABC có đường cao AH = 6 cm, Tính độ dài các đoạn thẳng AB, BH, AC, BC (làm tròn kết quả đến hàng phần mười của centimét)
Cho tam giác ABC có đường cao AH = 6 cm, Tính độ dài các đoạn thẳng AB, BH, AC, BC (làm tròn kết quả đến hàng phần mười của centimét)
Quảng cáo
Trả lời:

Xét ∆ABH vuông tại H, ta có:
⦁ suy ra
⦁ BH = AH.cotB = 6.cot40° ≈ 7,2 (cm).
Xét ∆ACH vuông tại H, ta có:
⦁ suy ra
⦁ CH = AH.cotC = 6.cot35° ≈ 8,6 (cm).
Khi đó, BC = BH + HC ≈ 7,2 + 8,6 = 15,8 (cm).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Xét ∆ABC vuông tại A, ta có:
Vậy
Lời giải
Vì AH ⊥ BC và BD ⊥ BC nên AH // BD. Do đó (so le trong).
Khoảng cách BD từ chân tháp đến chân tòa nhà là:
Do tứ giác ADBH có nên ADBH là hình chữ nhật.
Suy ra AH = DB ≈ 127, 9 (m) và HB = AD = 68 (m).
Do ∆AHC vuông tại H, ta có
Chiều cao BC của tháp truyền hình là: BC = BH + HC ≈ 68 + 119,3 = 187,3 (m).
Vậy khoảng cách BD từ chân tháp đến chân tòa nhà khoảng 127,9 mét và chiều cao BC của tháp truyền hình khoảng 187,3 mét.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.