Câu hỏi:
07/04/2024 136Ở lớp 10, ta đã biết về vectơ trong mặt phẳng và biết sử dụng vectơ để biểu thị các đại lượng có hướng và độ lớn trong mặt phẳng, ví dụ như vận tốc hay lực. Đối với các đại lượng có hướng trong không gian, ta có thể sử dụng vectơ để biểu diễn chúng hay không? Các phép toán vectơ trong trường hợp này giống và khác như thế nào với các phép toán vectơ trong mặt phẳng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Sau khi học xong bài này, ta thấy rằng:
Trong không gian, vectơ vẫn là công cụ để biểu diễn các đại lượng có hướng như vận tốc, lực hay các đại lượng khác. Các phép toán trong không gian tương tự như trong mặt phẳng nhưng có một số khác biết như:
- Biểu diễn vectơ: Trong không gian mỗi vectơ được biểu diễn bởi một cặp ba giá trị (x; y; z).
- Các phép toán vectơ: cơ bản vẫn giống trong mặt phẳng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong Luyện tập 8, ta đã biết trọng tâm của tứ diện ABCD là một điểm I thỏa mãn , ở đó G là trọng tâm của tam giác BCD. Áp dụng tính chất trên để tính khoảng cách từ trọng tâm của một khối rubik (đồng chất) hình tứ diện đều đến một mặt của nó, biết rằng chiều cao của khối rubik là 8 cm (H.2.30).
Câu 2:
Cho hình lập phương ABCD.A'B'C'D' có độ dài mỗi cạnh bằng 1 (H.2.12). Tính độ dài của vectơ .
Câu 3:
Khi chuyển động trong không gian, máy bay luôn chịu tác động của bốn lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học (H.2.20). Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900 km/h lên 920 km/h, trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900 km/h và 920 km/h lần lượt được biểu diễn bởi hai vectơ và . Hãy giải thích vì sao với k là một số thực dương nào đó. Tính giá trị của k (làm tròn kết quả đến chữ số thập phân thứ hai).
Câu 4:
Trong Ví dụ 10, cho hình chóp tứ giác đều S.ABCD có độ dài tất cả các cạnh bằng a (H.2.26). Hãy tính các tích vô hướng và .
Câu 6:
Cho hình chóp S.ABC. Trên cạnh SA, lấy điểm M sao cho SM = 2AM. Trên cạnh BC, lấy điểm N sao cho CN = 2BN. Chứng minh rằng .
Câu 7:
Cho hình chóp tứ giác S.ABCD. Chứng minh rằng tứ giác ABCD là hình bình hành nếu và chỉ nếu .
về câu hỏi!