Câu hỏi:
13/07/2024 8,045
Cho mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, thứ hai, thứ ba lần lượt là Q1, Q2, Q3. Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng:
A. 2Q2.
B. Q1 – Q3.
C. Q3 – Q1.
D. Q3 + Q1 – Q2.
Cho mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, thứ hai, thứ ba lần lượt là Q1, Q2, Q3. Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng:
A. 2Q2.
B. Q1 – Q3.
C. Q3 – Q1.
D. Q3 + Q1 – Q2.
Quảng cáo
Trả lời:
Đáp án đúng là: C
Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó là ∆Q = Q3 – Q1.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hà Nội
Trong mẫu số liệu ghép nhóm ở Bảng 22, ta có: đầu mút trái của nhóm 1 là a1 = 16,8; đầu mút phải của nhóm 5 là a6 = 31,8.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
R = a6 – a1 = 31,8 – 16,8 = 15 (độ C).
Từ Bảng 22 ta có bảng thống kê sau:
Nhóm |
Tần số |
Tần số tích lũy |
[16,8; 19,8) |
2 |
2 |
[19,8; 22,8) |
3 |
5 |
[22,8; 25,8) |
2 |
7 |
[25,8; 28,8) |
1 |
8 |
[28,8; 31,8) |
4 |
12 |
|
n = 12 |
|
Số phần tử của mẫu là n = 12.
- Ta có: mà 2 < 3 < 5. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [19,8; 22,8) có s = 19,8; h = 3; n2 = 3 và nhóm 1 là nhóm [16,8; 19,8) có cf1 = 2.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(độ C).
- Ta có: mà 8 < 9 < 12. Suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 5 là nhóm [28,8; 31,8) có t = 28,8; l = 3; n5 = 4 và nhóm 4 là nhóm [25,8; 28,8) có cf4 = 8.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(độ C).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
∆Q = Q3 – Q1 = 29,55 – 20,8 = 8,75 (độ C).
Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
(độ C).
Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
∙ [2 ∙ (18,3 – 24,8)2 + 3 ∙ (21,3 – 24,8)2 + 2 ∙ (24,3 – 24,8)2
+ 1 ∙ (27,3 – 24,8)2 + 4 ∙ (30,3 – 24,8)2] = = 20,75.
Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (độ C).
Huế
Trong mẫu số liệu ghép nhóm ở Bảng 23, ta có: đầu mút trái của nhóm 1 là a1 = 16,8; đầu mút phải của nhóm 5 là a6 = 31,8.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
R' = a6 – a1 = 31,8 – 16,8 = 15 (độ C).
Từ Bảng 23 ta có bảng thống kê sau:
Nhóm |
Tần số |
Tần số tích lũy |
[16,8; 19,8) |
1 |
1 |
[19,8; 22,8) |
2 |
3 |
[22,8; 25,8) |
3 |
6 |
[25,8; 28,8) |
2 |
8 |
[28,8; 31,8) |
4 |
12 |
|
n = 12 |
|
Số phần tử của mẫu là n = 12.
- Ta có: mà 1 < 3. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [19,8; 22,8) có s = 19,8; h = 3; n2 = 2 và nhóm 1 là nhóm [16,8; 19,8) có cf1 = 1.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(độ C).
- Ta có: mà 8 < 9 < 12. Suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 5 là nhóm [28,8; 31,8) có t = 28,8; l = 3; n5 = 4 và nhóm 4 là nhóm [25,8; 28,8) có cf4 = 8.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(độ C).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
∆'Q = Q'3 – Q'1 = 29,55 – 22,8 = 6,75 (độ C).
Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
(độ C).
Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
∙ [1 ∙ (18,3 – 25,8)2 + 2 ∙ (21,3 – 25,8)2 + 3 ∙ (24,3 – 25,8)2
+ 2 ∙ (27,3 – 25,8)2 + 4 ∙ (30,3 – 25,8)2] = = 15,75.
Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (độ C).
Lời giải
a) Từ Bảng 24, ta có các bảng thống kê sau:
Nhóm |
Giá trị đại diện |
Tần số |
|
Nhóm |
Giá trị đại diện |
Tần số |
[75; 78,3) |
76,65 |
0 |
|
[75; 78,3) |
76,65 |
5 |
[78,3; 81,6) |
79,95 |
2 |
|
[78,3; 81,6) |
79,95 |
6 |
[81,6; 84,9) |
83,25 |
1 |
|
[81,6; 84,9) |
83,25 |
1 |
[84,9; 88,2) |
86,55 |
7 |
|
[84,9; 88,2) |
86,55 |
0 |
[88,2; 91,5) |
89,85 |
2 |
|
[88,2; 91,5) |
89,85 |
0 |
|
|
n = 12 |
|
|
|
n = 12 |
Đà Lạt Vũng Tàu
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.