Bảng 24 thống kê độ ẩm không khí trung bình các tháng năm 2021 tại Đà Lạt và Vũng Tàu (đơn vị: %).
 
(Nguồn: Niên giám Thống kê 2021, NXB Thống kê, 2022)
a) Hãy lần lượt ghép các số liệu của Đà Lạt, Vũng Tàu thành năm nhóm sau: 
[75; 78,3), [78,3; 81,6), [81,6; 84,9), [84,9; 88,2), [88,2; 91,5).
                                    
                                                                                                                        Bảng 24 thống kê độ ẩm không khí trung bình các tháng năm 2021 tại Đà Lạt và Vũng Tàu (đơn vị: %).

(Nguồn: Niên giám Thống kê 2021, NXB Thống kê, 2022)
a) Hãy lần lượt ghép các số liệu của Đà Lạt, Vũng Tàu thành năm nhóm sau:
[75; 78,3), [78,3; 81,6), [81,6; 84,9), [84,9; 88,2), [88,2; 91,5).
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    a) Từ Bảng 24, ta có các bảng thống kê sau:
| Nhóm | Giá trị đại diện | Tần số | 
 | Nhóm | Giá trị đại diện | Tần số | 
| [75; 78,3) | 76,65 | 0 | 
 | [75; 78,3) | 76,65 | 5 | 
| [78,3; 81,6) | 79,95 | 2 | 
 | [78,3; 81,6) | 79,95 | 6 | 
| [81,6; 84,9) | 83,25 | 1 | 
 | [81,6; 84,9) | 83,25 | 1 | 
| [84,9; 88,2) | 86,55 | 7 | 
 | [84,9; 88,2) | 86,55 | 0 | 
| [88,2; 91,5) | 89,85 | 2 | 
 | [88,2; 91,5) | 89,85 | 0 | 
| 
 | 
 | n = 12 | 
 | 
 | 
 | n = 12 | 
Đà Lạt Vũng Tàu
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
 Hà Nội
 Trong mẫu số liệu ghép nhóm ở Bảng 22, ta có: đầu mút trái của nhóm 1 là a1 = 16,8; đầu mút phải của nhóm 5 là a6 = 31,8.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
R = a6 – a1 = 31,8 – 16,8 = 15 (độ C).
Từ Bảng 22 ta có bảng thống kê sau:
| Nhóm | Tần số | Tần số tích lũy | 
| [16,8; 19,8) | 2 | 2 | 
| [19,8; 22,8) | 3 | 5 | 
| [22,8; 25,8) | 2 | 7 | 
| [25,8; 28,8) | 1 | 8 | 
| [28,8; 31,8) | 4 | 12 | 
| 
 | n = 12 | 
 | 
Số phần tử của mẫu là n = 12.
- Ta có: mà 2 < 3 < 5. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [19,8; 22,8) có s = 19,8; h = 3; n2 = 3 và nhóm 1 là nhóm [16,8; 19,8) có cf1 = 2.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(độ C).
- Ta có: mà 8 < 9 < 12. Suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 5 là nhóm [28,8; 31,8) có t = 28,8; l = 3; n5 = 4 và nhóm 4 là nhóm [25,8; 28,8) có cf4 = 8.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(độ C).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
∆Q = Q3 – Q1 = 29,55 – 20,8 = 8,75 (độ C).
 Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
(độ C).
Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
∙ [2 ∙ (18,3 – 24,8)2 + 3 ∙ (21,3 – 24,8)2 + 2 ∙ (24,3 – 24,8)2
+ 1 ∙ (27,3 – 24,8)2 + 4 ∙ (30,3 – 24,8)2] = = 20,75.
 Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (độ C).
 Huế
 Trong mẫu số liệu ghép nhóm ở Bảng 23, ta có: đầu mút trái của nhóm 1 là a1 = 16,8; đầu mút phải của nhóm 5 là a6 = 31,8.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
R' = a6 – a1 = 31,8 – 16,8 = 15 (độ C).
Từ Bảng 23 ta có bảng thống kê sau:
| Nhóm | Tần số | Tần số tích lũy | 
| [16,8; 19,8) | 1 | 1 | 
| [19,8; 22,8) | 2 | 3 | 
| [22,8; 25,8) | 3 | 6 | 
| [25,8; 28,8) | 2 | 8 | 
| [28,8; 31,8) | 4 | 12 | 
| 
 | n = 12 | 
 | 
Số phần tử của mẫu là n = 12.
- Ta có: mà 1 < 3. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [19,8; 22,8) có s = 19,8; h = 3; n2 = 2 và nhóm 1 là nhóm [16,8; 19,8) có cf1 = 1.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(độ C).
- Ta có: mà 8 < 9 < 12. Suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 5 là nhóm [28,8; 31,8) có t = 28,8; l = 3; n5 = 4 và nhóm 4 là nhóm [25,8; 28,8) có cf4 = 8.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(độ C).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
∆'Q = Q'3 – Q'1 = 29,55 – 22,8 = 6,75 (độ C).
 Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
(độ C).
Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
∙ [1 ∙ (18,3 – 25,8)2 + 2 ∙ (21,3 – 25,8)2 + 3 ∙ (24,3 – 25,8)2
+ 2 ∙ (27,3 – 25,8)2 + 4 ∙ (30,3 – 25,8)2] = = 15,75.
 Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (độ C).
Lời giải
Đáp án đúng là: C
Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó là ∆Q = Q3 – Q1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo