b) Tính khoảng biến thiên, khoảng tứ phân vị, phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm của Đà Lạt và Vũng Tàu. 
                                    
                                                                                                                        b) Tính khoảng biến thiên, khoảng tứ phân vị, phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm của Đà Lạt và Vũng Tàu.
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    b)
 Đà Lạt
 Khoảng biến thiên của mẫu số liệu ghép nhóm của Đà Lạt là:
R = 91,5 – 78,3 = 13,2 (%).
Từ bảng thống kê trên, ta có bảng thống kê của mẫu số liệu ghép nhóm của Đà Lạt:
| Nhóm | Tần số | Tần số tích lũy | 
| [78,3; 81,6) | 2 | 2 | 
| [81,6; 84,9) | 1 | 3 | 
| [84,9; 88,2) | 7 | 10 | 
| [88,2; 91,5) | 2 | 12 | 
| 
 | n = 12 | 
 | 
Số phần tử của mẫu là n = 12.
- Ta có: mà 2 < 3. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [81,6; 84,9) có s = 81,6; h = 3,3; n2 = 1 và nhóm 1 là nhóm [78,3; 81,6) có cf1 = 2.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(%).
- Ta có: mà 3 < 9 < 10. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 3 là nhóm [84,9; 88,2) có t = 84,9; l = 3,3; n3 = 7 và nhóm 2 là nhóm [81,6; 84,9) có cf2 = 3.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(%).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm của Đà Lạt là:
∆Q = Q3 – Q1 = 87,7 – 84,9 = 2,8 (%).
 Số trung bình cộng của mẫu số liệu ghép nhóm của Đà Lạt là:
(%).
Vậy phương sai của của mẫu số liệu ghép nhóm của Đà Lạt là:
∙ [2 ∙ (79,95 – 85,725)2 + 1 ∙ (83,25 – 85,725)2 + 7 ∙ (86,55 – 85,725)2
+ 2 ∙ (89,85 – 85,725)2] = ≈ 9,3.
 Độ lệch chuẩn của mẫu số liệu ghép nhóm của Đà Lạt là: (%).
 Vũng Tàu
 Khoảng biến thiên của mẫu số liệu ghép nhóm của Vũng Tàu là:
R' = 84,9 – 75 = 9,9 (%).
Từ bảng thống kê trên, ta có bảng thống kê của mẫu số liệu ghép nhóm của Vũng Tàu:
| Nhóm | Tần số | Tần số tích lũy | 
| [75; 78,3) | 5 | 5 | 
| [78,3; 81,6) | 6 | 11 | 
| [81,6; 84,9) | 1 | 12 | 
| 
 | n = 12 | 
 | 
Số phần tử của mẫu là n = 12.
- Ta có: mà 5 > 3. Suy ra nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 1 là nhóm [75; 78,3) có s = 75; h = 3,3; n1 = 5.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(%).
- Ta có: mà 5 < 9 < 11. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 2 là nhóm [78,3; 81,6) có t = 78,3; l = 3,3; n2 = 6 và nhóm 1 là nhóm [75; 78,3) có cf1 = 5.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(%).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm của Vũng Tàu là:
∆'Q = Q'3 – Q'1 = 80,5 – 76,98 = 3,52 (%).
 Số trung bình cộng của mẫu số liệu ghép nhóm của Vũng Tàu là:
(%).
Vậy phương sai của của mẫu số liệu ghép nhóm của Vũng Tàu là:
∙ [5 ∙ (76,65 – 78,85)2 + 6 ∙ (79,95 – 78,85)2 + 1 ∙ (83,25 – 78,85)2]
= = 4,235.
 Độ lệch chuẩn của mẫu số liệu ghép nhóm của Vũng Tàu là: (%).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
 Hà Nội
 Trong mẫu số liệu ghép nhóm ở Bảng 22, ta có: đầu mút trái của nhóm 1 là a1 = 16,8; đầu mút phải của nhóm 5 là a6 = 31,8.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
R = a6 – a1 = 31,8 – 16,8 = 15 (độ C).
Từ Bảng 22 ta có bảng thống kê sau:
| Nhóm | Tần số | Tần số tích lũy | 
| [16,8; 19,8) | 2 | 2 | 
| [19,8; 22,8) | 3 | 5 | 
| [22,8; 25,8) | 2 | 7 | 
| [25,8; 28,8) | 1 | 8 | 
| [28,8; 31,8) | 4 | 12 | 
| 
 | n = 12 | 
 | 
Số phần tử của mẫu là n = 12.
- Ta có: mà 2 < 3 < 5. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [19,8; 22,8) có s = 19,8; h = 3; n2 = 3 và nhóm 1 là nhóm [16,8; 19,8) có cf1 = 2.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(độ C).
- Ta có: mà 8 < 9 < 12. Suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 5 là nhóm [28,8; 31,8) có t = 28,8; l = 3; n5 = 4 và nhóm 4 là nhóm [25,8; 28,8) có cf4 = 8.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(độ C).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
∆Q = Q3 – Q1 = 29,55 – 20,8 = 8,75 (độ C).
 Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
(độ C).
Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
∙ [2 ∙ (18,3 – 24,8)2 + 3 ∙ (21,3 – 24,8)2 + 2 ∙ (24,3 – 24,8)2
+ 1 ∙ (27,3 – 24,8)2 + 4 ∙ (30,3 – 24,8)2] = = 20,75.
 Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (độ C).
 Huế
 Trong mẫu số liệu ghép nhóm ở Bảng 23, ta có: đầu mút trái của nhóm 1 là a1 = 16,8; đầu mút phải của nhóm 5 là a6 = 31,8.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
R' = a6 – a1 = 31,8 – 16,8 = 15 (độ C).
Từ Bảng 23 ta có bảng thống kê sau:
| Nhóm | Tần số | Tần số tích lũy | 
| [16,8; 19,8) | 1 | 1 | 
| [19,8; 22,8) | 2 | 3 | 
| [22,8; 25,8) | 3 | 6 | 
| [25,8; 28,8) | 2 | 8 | 
| [28,8; 31,8) | 4 | 12 | 
| 
 | n = 12 | 
 | 
Số phần tử của mẫu là n = 12.
- Ta có: mà 1 < 3. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [19,8; 22,8) có s = 19,8; h = 3; n2 = 2 và nhóm 1 là nhóm [16,8; 19,8) có cf1 = 1.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(độ C).
- Ta có: mà 8 < 9 < 12. Suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 5 là nhóm [28,8; 31,8) có t = 28,8; l = 3; n5 = 4 và nhóm 4 là nhóm [25,8; 28,8) có cf4 = 8.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(độ C).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
∆'Q = Q'3 – Q'1 = 29,55 – 22,8 = 6,75 (độ C).
 Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
(độ C).
Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
∙ [1 ∙ (18,3 – 25,8)2 + 2 ∙ (21,3 – 25,8)2 + 3 ∙ (24,3 – 25,8)2
+ 2 ∙ (27,3 – 25,8)2 + 4 ∙ (30,3 – 25,8)2] = = 15,75.
 Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (độ C).
Lời giải
Đáp án đúng là: C
Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó là ∆Q = Q3 – Q1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

 Nhắn tin Zalo
 Nhắn tin Zalo