Câu hỏi:
13/07/2024 940
c) Trong hai thành phố Đà Lạt và Vũng Tàu, thành phố nào có độ ẩm không khí trung bình tháng đồng đều hơn?
c) Trong hai thành phố Đà Lạt và Vũng Tàu, thành phố nào có độ ẩm không khí trung bình tháng đồng đều hơn?
Quảng cáo
Trả lời:
c) Vì s' ≈ 2,06 < s ≈ 3,05 nên thành phố Vũng Tàu có độ ẩm không khí trung bình tháng đồng đều hơn thành phố Đà Lạt.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hà Nội
Trong mẫu số liệu ghép nhóm ở Bảng 22, ta có: đầu mút trái của nhóm 1 là a1 = 16,8; đầu mút phải của nhóm 5 là a6 = 31,8.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
R = a6 – a1 = 31,8 – 16,8 = 15 (độ C).
Từ Bảng 22 ta có bảng thống kê sau:
Nhóm |
Tần số |
Tần số tích lũy |
[16,8; 19,8) |
2 |
2 |
[19,8; 22,8) |
3 |
5 |
[22,8; 25,8) |
2 |
7 |
[25,8; 28,8) |
1 |
8 |
[28,8; 31,8) |
4 |
12 |
|
n = 12 |
|
Số phần tử của mẫu là n = 12.
- Ta có: mà 2 < 3 < 5. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [19,8; 22,8) có s = 19,8; h = 3; n2 = 3 và nhóm 1 là nhóm [16,8; 19,8) có cf1 = 2.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(độ C).
- Ta có: mà 8 < 9 < 12. Suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 5 là nhóm [28,8; 31,8) có t = 28,8; l = 3; n5 = 4 và nhóm 4 là nhóm [25,8; 28,8) có cf4 = 8.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(độ C).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
∆Q = Q3 – Q1 = 29,55 – 20,8 = 8,75 (độ C).
Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
(độ C).
Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
∙ [2 ∙ (18,3 – 24,8)2 + 3 ∙ (21,3 – 24,8)2 + 2 ∙ (24,3 – 24,8)2
+ 1 ∙ (27,3 – 24,8)2 + 4 ∙ (30,3 – 24,8)2] = = 20,75.
Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (độ C).
Huế
Trong mẫu số liệu ghép nhóm ở Bảng 23, ta có: đầu mút trái của nhóm 1 là a1 = 16,8; đầu mút phải của nhóm 5 là a6 = 31,8.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
R' = a6 – a1 = 31,8 – 16,8 = 15 (độ C).
Từ Bảng 23 ta có bảng thống kê sau:
Nhóm |
Tần số |
Tần số tích lũy |
[16,8; 19,8) |
1 |
1 |
[19,8; 22,8) |
2 |
3 |
[22,8; 25,8) |
3 |
6 |
[25,8; 28,8) |
2 |
8 |
[28,8; 31,8) |
4 |
12 |
|
n = 12 |
|
Số phần tử của mẫu là n = 12.
- Ta có: mà 1 < 3. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [19,8; 22,8) có s = 19,8; h = 3; n2 = 2 và nhóm 1 là nhóm [16,8; 19,8) có cf1 = 1.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(độ C).
- Ta có: mà 8 < 9 < 12. Suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 5 là nhóm [28,8; 31,8) có t = 28,8; l = 3; n5 = 4 và nhóm 4 là nhóm [25,8; 28,8) có cf4 = 8.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(độ C).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
∆'Q = Q'3 – Q'1 = 29,55 – 22,8 = 6,75 (độ C).
Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
(độ C).
Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
∙ [1 ∙ (18,3 – 25,8)2 + 2 ∙ (21,3 – 25,8)2 + 3 ∙ (24,3 – 25,8)2
+ 2 ∙ (27,3 – 25,8)2 + 4 ∙ (30,3 – 25,8)2] = = 15,75.
Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (độ C).
Lời giải
Đáp án đúng là: C
Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó là ∆Q = Q3 – Q1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.