Câu hỏi:
21/06/2024 105Trong một hộp có 100 tấm thẻ được đánh số từ 101 đến 200 (mỗi tấm thẻ được đánh một số khác nhau). Lấy ngẫu nhiên đồng thời 3 tấm thẻ trong hộp. Xác suất để tổng các số ghi trên 3 tấm thẻ đó là một số chia hết cho 3 là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố "Tổng các số ghi trên 3 tấm thẻ đó là một số chia hết cho 3".
Gọi các số chia hết cho 3 có là \(3k\).
Xét \(101 \le 3k \le 200 \Leftrightarrow 33,6 \le k \le 66,6\).
Suy ra \(k\) có 33 giá trị tương ứng với 33 thẻ có số chia hết cho 3 trong 100 tấm thẻ.
Tương tự, ta gọi các số chia cho 3 dư 1 và chia 3 dư 2 lần lượt là: \(3k + 1\) và \(3k + 2\).
Do đó, trong 100 tấm thẻ có 33 thẻ có số chia hết cho 3,33 thẻ có số chia 3 dư 1, 34 thẻ có số chia 3 dư 2.
Để lấy được 3 thẻ có tổng các số chia hết cho 3 , ta có 4 trường hợp:
• TH1: 3 thẻ bốc được đều có số chia hết cho 3 nên số cách lấy là \(C_{33}^3\) (cách).
• TH2: 3 thẻ bốc được đều có số chia hết cho 3 dư 1 nên số cách lấy: \(C_{33}^3\) (cách).
• TH3: 3 thẻ bốc được đều có số chia hết cho 3 dư 1 nên số cách lấy: \(C_{34}^3\) (cách).
• TH4: 3 thẻ bốc được có 1 thẻ có số chia hết cho \[3\,;\,\,1\] thẻ có số chia 3 dư \[1\,;\,\,1\] thẻ có số chia 3 dư 2 nên số cách lấy: \(C_{33}^1 \cdot C_{33}^1 \cdot C_{34}^1\) (cách).
\( \Rightarrow n\left( A \right) = C_{33}^3 + C_{33}^3 + C_{34}^3 + C_{33}^1 \cdot C_{33}^1.C_{34}^1.\)
Xác suất của biến cố \(A\) là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{33}^3 + C_{33}^3 + C_{34}^3 + C_{33}^1 \cdot C_{33}^1 \cdot C_{34}^1}}{{C_{100}^3}} \approx 0,33.\)
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một xe khách đi từ Việt Trì về Hà Nội chở tối đa 60 hành khách một chuyến. Nếu một chuyến chở được \(m\) hành khách thì giá tiền cho mỗi hành khách được tính là \({\left( {30 - \frac{{5m}}{2}} \right)^2}\) đồng. Tính số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận của mỗi chuyến xe là lớn nhất.
Câu 2:
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {{x^3} - 3x} \right) = m\) có 6 nghiệm thuộc đoạn \(\left[ { - 1\,;\,\,2} \right]?\)
Câu 3:
Tập hợp các giá trị của \(m\) để hàm số \(y = - m{x^3} + {x^2} - 3x + m - 2\) nghịch biến trên khoảng \[\left( { - 3\,;\,\,0} \right)\] là
Câu 4:
Trong không gian \[Oxyz,\] cho điểm \(A\left( {2\,;\,\, - 3\,;\,\,5} \right).\) Điểm \[A'\] đối xứng với điểm \[A\] qua trục Oy. Tọa độ điểm \[A'\] là
Câu 5:
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\left( {x + 1} \right)\left( {x - 3} \right) + \sqrt {8 + 2x - {x^2}} = 2m\) có nghiệm?
Câu 6:
Đồ thị dao động điều hòa của một vật như hình vē. Xác định tốc độ cực đại của vật.
Câu 7:
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2} - 2x\) với mọi \(x \in \mathbb{R}.\) Hàm số \(g\left( x \right) = f\left( {1 - \frac{x}{2}} \right) + 4x\) đồng biến trên khoảng nào trong các khoảng sau?
về câu hỏi!