Câu hỏi:

19/08/2025 483 Lưu

Gọi \((H)\) là hình phẳng giới hạn bởi các đường \(y = {x^2} - 4x + 4\), trục tung và trục hoành. Xác định \(k\) để đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( {0\,;\,\,4} \right)\) có hệ số góc \(k\) chia thành hai phần có diện tích bằng nhau?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phương trình hoành độ giao điểm của đồ thị hàm số \(y = {x^2} - 4x + 4\) và trục hoành là:

\({x^2} - 4x + 4 = 0 \Leftrightarrow x = 2.{\rm{ }}\)

Diện tích hình phẳng \((H)\) giới hạn bởi đồ thị hàm số: \(y = {x^2} - 4x + 4\), trục tung và trục hoành là:

\[S = \int\limits_0^2 {\left| {{x^2} - 4x + 4} \right|} \,dx = \int\limits_0^2 {\left( {{x^2} - 4x + 4} \right)} \,dx = \left. {\left( {\frac{{{x^3}}}{3} - 2{x^2} + 4x} \right)} \right|_0^2 = \frac{8}{3}.\]

Phương trình đường thẳng \((d)\) đi qua điểm \(A\left( {0\,;\,\,4} \right)\) có hệ số góc \(k\) có dạng: \(y = kx + 4.\)

Gọi \(B\) là giao điểm của \((d)\) và trục hoành. Khi đó \(B\left( { - \frac{4}{k}\,;\,\,0} \right).\)

Đường thẳng \((d)\) chia \((H)\) thành hai phần có diện tích bằng nhau khi \(B \in OI\) và

\({S_{OAB}} = \frac{1}{2}S = \frac{4}{3} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 <  - \frac{4}{k} < 2}\\{{S_{OAB}} = \frac{1}{2}OA \cdot OB = \frac{1}{2} \cdot 4 \cdot \frac{{ - 4}}{k} = \frac{4}{3}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{k <  - 2}\\{k =  - \,6}\end{array} \Leftrightarrow k =  - 6.} \right.} \right.\)

Đáp án: −6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận lớn nhất.

Gọi \(F\left( x \right)\) là hàm chỉ số tiền thu được sau mỗi chuyến xe \(\left( {0 < x \le 60\,,\,\,x \in \mathbb{N}} \right).\)

Số tiền thu được sau mỗi chuyến xe:

\(F\left( x \right) = {\left( {300 - \frac{{5x}}{2}} \right)^2} \cdot x = 90\,\,000x - 1500{x^2} + \frac{{25}}{4}{x^3}\).

Bài toán trở thành tìm \(x\) để \(F(x)\) đạt giá trị lớn nhất thì \(F'\left( x \right) = 90\,\,000 - 3\,\,000x + \frac{{75}}{4}{x^2}\)

\(F'\left( x \right) = 0 \Leftrightarrow 90\,\,000 - 3\,\,000x + \frac{{75}}{4}{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 120}&{(L)}\\{x = 40}&{(TM)}\end{array}.} \right.\)

Bảng biến thiên:

Media VietJack

Vậy để thu được lợi nhuận của mỗi chuyến xe là lớn nhất thì mỗi chuyến xe phải chở 40 người.

Câu 2

A. \(A'\left( {2\,;\,\,3\,;\,\,5} \right).\)                
B. \(A'\left( {2\,;\,\, - 3\,;\,\, - 5} \right).\)           
C. \(A'\left( { - 2\,;\,\, - 3\,;\,\,5} \right).\)     
D. \(A'\left( { - 2\,;\,\, - 3\,;\,\, - 5} \right).\)

Lời giải

Gọi \(H\) là hình chiếu vuông góc của \(A\left( {2\,;\,\, - 3\,;\,\,5} \right)\) lên \[Oy.\]

Suy ra \(H\left( {0\,;\,\, - 3\,;\,\,0} \right).\) Khi đó \(H\) là trung điểm đoạn \(AA'.\)

Do đó \[\left\{ {\begin{array}{*{20}{l}}{{x_H} = \frac{{{x_A} + {x_{A'}}}}{2}}\\{{y_H} = \frac{{{y_A} + {y_{A'}}}}{2}}\\{{z_H} = \frac{{{z_A} + {z_{A'}}}}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_{A'}} = 2{x_H} - {x_A} = 2 \cdot 0 - 2 =  - 2}\\{{y_{A'}} = 2{y_H} - {y_A} = 2 \cdot \left( { - 3} \right) - ( - 3) =  - 3}\\{{z_{A'}} = 2{z_H} - {z_A} = 2 \cdot 0 - 5 =  - 5}\end{array}} \right.} \right.\].

\[ \Rightarrow A'\left( { - 2\,;\,\, - 3\,;\,\, - 5} \right).\] Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Lao động có kĩ thuật cao. 
B. Cơ sở vật chất kĩ thuật tốt. 
C. Giao thông vận tải phát triển.
D. Thị trường tiêu thụ rộng lớn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left[ { - \frac{1}{3}; + \infty } \right).\)    
B. \(\left( { - \frac{1}{3}; + \infty } \right).\)   
C. \(\left( { - \infty ; - \frac{1}{3}} \right).\)   
D. \(\left[ { - \frac{1}{3};0} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP