Câu hỏi:

19/08/2025 776 Lưu

Xét một bảng hình vuông gồm 4 x 4 ô vuông. Người ta điền vào mỗi ô vuông đó một trong hai số 1 hoặc -1 sao cho tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0 . Hỏi có bao nhiêu cách điền như trên?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Nhận xét: Để tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0 thì số lượng số 1 và số lượng số \[ - 1\] trong mỗi hàng và mỗi cột đều là 2.

Media VietJack

Do đó, mỗi hàng và mỗi cột đều có đúng 2 số 1.

Chọn 2 ô ở cột 1 để đặt số 1, ta có: \(C_4^2 = 6\) (cách).

 Media VietJack

Ví dụ: Ở mỗi hàng mà chứa 2 ô vừa được chọn, ta chọn đúng 1 ô để đặt số 1, khi đó có 2 trường hợp:

TH1: 2 ô được chọn ở cùng một cột: có \(C_3^1 = 3\) (cách)Media VietJack

Khi đó, ở 2 cột còn lại có duy nhất cách đặt số 1 vào 4 ô: không cùng hàng và cột với ô đã điền. Như hình vẽ sau:

Media VietJack

TH2: 2 ô được chọn khác cột có: \(3 \cdot 2 = 6\) (cách)

Media VietJack

Khi đó, số cách đặt 4 số 1 còn lại là: \[1 \cdot 1 \cdot 2!{\rm{ }} = {\rm{ }}2\] (cách), trong đó, 2 số 1 để vào đúng 2 ô còn lại của hàng chưa điền, 2 số 1 còn lại hoán vị vào 2 ô ở 2 hàng vừa điền bước trước.

Media VietJack

Vậy, số cách xếp là: \(6 \cdot \left( {3 \cdot 1 + 6 \cdot 2} \right) = 6 \cdot 15 = 90\) (cách).

Đáp án: 90.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận lớn nhất.

Gọi \(F\left( x \right)\) là hàm chỉ số tiền thu được sau mỗi chuyến xe \(\left( {0 < x \le 60\,,\,\,x \in \mathbb{N}} \right).\)

Số tiền thu được sau mỗi chuyến xe:

\(F\left( x \right) = {\left( {300 - \frac{{5x}}{2}} \right)^2} \cdot x = 90\,\,000x - 1500{x^2} + \frac{{25}}{4}{x^3}\).

Bài toán trở thành tìm \(x\) để \(F(x)\) đạt giá trị lớn nhất thì \(F'\left( x \right) = 90\,\,000 - 3\,\,000x + \frac{{75}}{4}{x^2}\)

\(F'\left( x \right) = 0 \Leftrightarrow 90\,\,000 - 3\,\,000x + \frac{{75}}{4}{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 120}&{(L)}\\{x = 40}&{(TM)}\end{array}.} \right.\)

Bảng biến thiên:

Media VietJack

Vậy để thu được lợi nhuận của mỗi chuyến xe là lớn nhất thì mỗi chuyến xe phải chở 40 người.

Câu 2

A. \(A'\left( {2\,;\,\,3\,;\,\,5} \right).\)                
B. \(A'\left( {2\,;\,\, - 3\,;\,\, - 5} \right).\)           
C. \(A'\left( { - 2\,;\,\, - 3\,;\,\,5} \right).\)     
D. \(A'\left( { - 2\,;\,\, - 3\,;\,\, - 5} \right).\)

Lời giải

Gọi \(H\) là hình chiếu vuông góc của \(A\left( {2\,;\,\, - 3\,;\,\,5} \right)\) lên \[Oy.\]

Suy ra \(H\left( {0\,;\,\, - 3\,;\,\,0} \right).\) Khi đó \(H\) là trung điểm đoạn \(AA'.\)

Do đó \[\left\{ {\begin{array}{*{20}{l}}{{x_H} = \frac{{{x_A} + {x_{A'}}}}{2}}\\{{y_H} = \frac{{{y_A} + {y_{A'}}}}{2}}\\{{z_H} = \frac{{{z_A} + {z_{A'}}}}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_{A'}} = 2{x_H} - {x_A} = 2 \cdot 0 - 2 =  - 2}\\{{y_{A'}} = 2{y_H} - {y_A} = 2 \cdot \left( { - 3} \right) - ( - 3) =  - 3}\\{{z_{A'}} = 2{z_H} - {z_A} = 2 \cdot 0 - 5 =  - 5}\end{array}} \right.} \right.\].

\[ \Rightarrow A'\left( { - 2\,;\,\, - 3\,;\,\, - 5} \right).\] Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Lao động có kĩ thuật cao. 
B. Cơ sở vật chất kĩ thuật tốt. 
C. Giao thông vận tải phát triển.
D. Thị trường tiêu thụ rộng lớn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left[ { - \frac{1}{3}; + \infty } \right).\)    
B. \(\left( { - \frac{1}{3}; + \infty } \right).\)   
C. \(\left( { - \infty ; - \frac{1}{3}} \right).\)   
D. \(\left[ { - \frac{1}{3};0} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP