Câu hỏi:
13/07/2024 431Cho một tấm nhôm hình vuông cạnh 1m như hình sau:
Người ta cắt phần tô đậm của tấm nhôm rồi gập thành một hình chóp tứ giác đều có cạnh đáy bằng x (m). Tìm giá trị của x để khối chóp nhận được có thể tích lớn nhất (kết quả làm tròn đến hàng phần trăm).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt cạnh bên là \(y\) và cạnh đáy của chóp đều là \(x\).
Độ dài đường cao của mặt bên là: \(a = \sqrt {{y^2} - {{\left( {\frac{x}{2}} \right)}^2}} \).
Khi đó theo tấm nhôm, ta được: \(2a + x = \sqrt 2 \Leftrightarrow 2\sqrt {{y^2} - \frac{{{x^2}}}{4}} + x = \sqrt 2 \) (bằng đường chéo tấm nhôm hình vuông).
\( \Rightarrow 4\left( {{y^2} - \frac{{{x^2}}}{4}} \right) = {\left( {\sqrt 2 - x} \right)^2} = {x^2} - 2x\sqrt 2 + 2 \Rightarrow 4{y^2} = 2{x^2} - 2x\sqrt 2 + 2.\)
Lại có \({V_{hc}} = \frac{1}{3}h \cdot {S_a} = \frac{1}{3}\sqrt {{y^2} - {{\left( {\frac{{x\sqrt 2 }}{2}} \right)}^2}} \cdot {x^2} = \frac{{{x^2}}}{3}\sqrt {\frac{{1 - x\sqrt 2 }}{2}} = \frac{1}{6}\sqrt {2{x^4} - 2\sqrt 2 {x^5}} .\)
Ta thấy \({V_{hc}}\) lớn nhất khi \(f\left( x \right) = 2{x^4} - 2\sqrt 2 {x^5}\) đạt giá trị lớn nhất \(\left( {0 < x < \frac{{\sqrt 2 }}{2}} \right)\).
Ta có \(f'\left( x \right) = 8{x^3} - 10\sqrt 2 {x^4} = 2{x^3}\left( {4 - 5\sqrt 2 x} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = \frac{{2\sqrt 2 }}{5}}\end{array}} \right.\).
Ta có bảng biến thiên:
Vậy thể tích khối chóp lớn nhất khi và chỉ khi \(x = \frac{{2\sqrt 2 }}{5} \approx 0,57\;\,({\rm{m)}}.\)
Đáp án: \[{\bf{0}},{\bf{57}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một xe khách đi từ Việt Trì về Hà Nội chở tối đa 60 hành khách một chuyến. Nếu một chuyến chở được \(m\) hành khách thì giá tiền cho mỗi hành khách được tính là \({\left( {30 - \frac{{5m}}{2}} \right)^2}\) đồng. Tính số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận của mỗi chuyến xe là lớn nhất.
Câu 2:
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {{x^3} - 3x} \right) = m\) có 6 nghiệm thuộc đoạn \(\left[ { - 1\,;\,\,2} \right]?\)
Câu 3:
Tập hợp các giá trị của \(m\) để hàm số \(y = - m{x^3} + {x^2} - 3x + m - 2\) nghịch biến trên khoảng \[\left( { - 3\,;\,\,0} \right)\] là
Câu 4:
Trong không gian \[Oxyz,\] cho điểm \(A\left( {2\,;\,\, - 3\,;\,\,5} \right).\) Điểm \[A'\] đối xứng với điểm \[A\] qua trục Oy. Tọa độ điểm \[A'\] là
Câu 5:
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\left( {x + 1} \right)\left( {x - 3} \right) + \sqrt {8 + 2x - {x^2}} = 2m\) có nghiệm?
Câu 6:
Đồ thị dao động điều hòa của một vật như hình vē. Xác định tốc độ cực đại của vật.
Câu 7:
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2} - 2x\) với mọi \(x \in \mathbb{R}.\) Hàm số \(g\left( x \right) = f\left( {1 - \frac{x}{2}} \right) + 4x\) đồng biến trên khoảng nào trong các khoảng sau?
về câu hỏi!