Câu hỏi:
13/07/2024 9,775
Trong không gian Oxyz, cho hình hộp ABCD.A'B'C'D', với A(1; −1; 3), B(0; 2; 4), D(2; −1; 1), A'(0; 1; 2).
a) Tìm tọa độ các điểm C, B', D'.
b) Viết phương trình mặt phẳng (CB'D').
Trong không gian Oxyz, cho hình hộp ABCD.A'B'C'D', với A(1; −1; 3), B(0; 2; 4), D(2; −1; 1), A'(0; 1; 2).
a) Tìm tọa độ các điểm C, B', D'.
b) Viết phương trình mặt phẳng (CB'D').
Quảng cáo
Trả lời:

a) Ta có \(\overrightarrow {AD} = \left( {1;0; - 2} \right),\overrightarrow {AA'} = \left( { - 1;2; - 1} \right),\overrightarrow {AB} = \left( { - 1;3;1} \right)\).
Vì ABCD là hình bình hành nên \(\overrightarrow {AD} = \overrightarrow {BC} \)\( \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 1\\{y_C} - 2 = 0\\{z_C} - 4 = - 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 1\\{y_C} = 2\\{z_C} = 2\end{array} \right.\).
Vậy C(1; 2; 2).
Vì ABB'A' là hình bình hành nên \(\overrightarrow {AA'} = \overrightarrow {BB'} \)\( \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = - 1\\{y_{B'}} - 2 = 2\\{z_{C'}} - 4 = - 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = - 1\\{y_{B'}} = 4\\{z_{C'}} = 3\end{array} \right.\).
Vậy B'(−1; 4; 3).
Vì ADD'A' là hình bình hành nên \(\overrightarrow {AD} = \overrightarrow {A'D'} \)\( \Leftrightarrow \left\{ \begin{array}{l}{x_{D'}} = 1\\{y_{D'}} - 1 = 0\\{z_{D'}} - 2 = - 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_{D'}} = 1\\{y_{D'}} = 1\\{z_{D'}} = 0\end{array} \right.\).
Vậy D'(1; 1; 0).
b) Ta có: \(\overrightarrow {CB'} = \left( { - 2;2;1} \right),\overrightarrow {CD'} = \left( {0; - 1; - 2} \right)\).
Vì mặt phẳng (CB'D') có cặp vectơ chỉ phương là \(\overrightarrow {CB'} ,\overrightarrow {CD'} \) nên có một vectơ pháp tuyến là:
\(\overrightarrow n = \left[ {\overrightarrow {CB'} ,\overrightarrow {CD'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&1\\{ - 1}&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&{ - 2}\\{ - 2}&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&2\\0&{ - 1}\end{array}} \right|} \right)\) = (−3; −4; 2).
Mặt phẳng (CB'D') đi qua điểm C(1; 2; 2) và nhận \(\overrightarrow n = \left( { - 3; - 4;2} \right)\) là một vectơ pháp tuyến có phương trình là:
−3(x – 1) −4(y – 2) + 2(z −2) = 0 Û 3x + 4y – 2z – 7 = 0.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi mặt phẳng cần tìm là mặt phẳng (P).
Ta có \(\overrightarrow i = \left( {1;0;0} \right)\) và \(\overrightarrow {{n_Q}} = \left( {1;2; - 3} \right)\).
Vì (P) // Ox và (P) ^ (Q) nên \(\overrightarrow {{n_P}} = \left[ {\overrightarrow i ,\overrightarrow {{n_Q}} } \right] = \left( {0;3;2} \right)\).
Mặt phẳng đi qua M(2; 3; −1) và nhận \(\overrightarrow {{n_P}} = \left( {0;3;2} \right)\) làm một vectơ pháp tuyến có phương trình là: 3(y – 3) + 2(z + 1) = 0 Û 3y + 2z – 7 = 0.
Lời giải

Chọn các điểm như hình vẽ.
Gọi A là hình chiếu của C trên mặt phẳng (P).
Vì CBD là tam giác cân nên CA là đường cao, phân giác, trung tuyến của BD.
Ta có \(CA = d\left( {C,\left( P \right)} \right) = \frac{{\left| {1 + 2.2 + 2.4 + 3} \right|}}{{\sqrt {1 + {2^2} + {2^2}} }} = \frac{{16}}{3}\).
Vì tam giác CAB vuông tại A, có \(\widehat {ACB} = \frac{{115^\circ }}{2} = 57,5^\circ \).
Suy ra R = AB = CA.tan57,5° ≈ 8,4.
Vậy vùng quan sát được trên mặt phẳng (P) của camera là hình tròn có bán kính bằng 8,4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.