Câu hỏi:

11/07/2024 786

Kim tự tháp Kheops ở Ai Cập có dạng hình chóp S.ABCD, có đáy là hình vuông với cạnh dài 230 m, các cạnh bên bằng nhau và dài 219 m (theo britannica.com) (H.5.38). Tính góc giữa hai mặt phẳng (SAB) và (SBC).

Kim tự tháp Kheops ở Ai Cập có dạng hình chóp S.ABCD, có đáy là hình vuông với cạnh dài 230 m, các cạnh bên bằng nhau và dài 219 m (theo britannica.com) (H.5.38). Tính góc giữa hai mặt phẳng (SAB) và (SBC).   (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Kim tự tháp Kheops ở Ai Cập có dạng hình chóp S.ABCD, có đáy là hình vuông với cạnh dài 230 m, các cạnh bên bằng nhau và dài 219 m (theo britannica.com) (H.5.38). Tính góc giữa hai mặt phẳng (SAB) và (SBC).   (ảnh 2)

Gọi O là giao điểm của AC và BD. Suy ra O là trung điểm của AC, BD.

Vì các tam giác SAC, SBD đều cân tại S, SO là trung tuyến nên SO đồng thời là đường cao.

Suy ra SO ^ AC, SO ^ BD nên SO ^ (ABCD).

Chọn hệ tọa độ như hình vẽ.

Vì ABCD là hình vuông cạnh 230 m nên OA = OB = OC = OD = \(115\sqrt 2 \).

Xét tam giác SOB vuông tại O, có \(SO = \sqrt {S{B^2} - O{B^2}} = \sqrt {{{219}^2} - {{\left( {115\sqrt 2 } \right)}^2}} = 7\sqrt {439} \).

Ta có \(A\left( { - 115\sqrt 2 ;0;0} \right),B\left( {0; - 115\sqrt 2 ;0} \right),C\left( {115\sqrt 2 ;0;0} \right),S\left( {0;0;7\sqrt {439} } \right)\).

Ta có \(\overrightarrow {SA} = \left( { - 115\sqrt 2 ;0; - 7\sqrt {439} } \right),\overrightarrow {SB} = \left( {0; - 115\sqrt 2 ; - 7\sqrt {439} } \right),\)

\(\overrightarrow {SC} = \left( {115\sqrt 2 ;0; - 7\sqrt {439} } \right)\).

Ta có \(\left[ {\overrightarrow {SA} ,\overrightarrow {SB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - 7\sqrt {439} }\\{ - 115\sqrt 2 }&{ - 7\sqrt {439} }\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 7\sqrt {439} }&{ - 115\sqrt 2 }\\{ - 7\sqrt {439} }&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 115\sqrt 2 }&0\\0&{ - 115\sqrt 2 }\end{array}} \right|} \right)\)

\( = \left( { - 805\sqrt {878} ; - 805\sqrt {878} ;26450} \right)\).

\(\left[ {\overrightarrow {SB} ,\overrightarrow {SC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 115\sqrt 2 }&{ - 7\sqrt {439} }\\0&{ - 7\sqrt {439} }\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 7\sqrt {439} }&0\\{ - 7\sqrt {439} }&{115\sqrt 2 }\end{array}} \right|,\left| {\begin{array}{*{20}{c}}0&{ - 115\sqrt 2 }\\{115\sqrt 2 }&0\end{array}} \right|} \right)\)

\( = \left( {805\sqrt {878} ; - 805\sqrt {878} ;26450} \right)\).

Mặt phẳng (SAB) nhận \(\overrightarrow n = \frac{1}{5}\left[ {\overrightarrow {SA} ,\overrightarrow {SB} } \right] = \left( { - 161\sqrt {878} ; - 161\sqrt {878} ;5290} \right)\) làm vectơ pháp tuyến.

Mặt phẳng (SBC) nhận \(\overrightarrow {n'} = \frac{1}{5}\left[ {\overrightarrow {SB} ,\overrightarrow {SC} } \right] = \left( {161\sqrt {878} ; - 161\sqrt {878} ;5290} \right)\) làm vectơ pháp tuyến.

Do đó

\(\begin{array}{l}\cos \left( {\left( {SAB} \right),\left( {SBC} \right)} \right)\\ = \frac{{\left| { - {{\left( {161\sqrt {878} } \right)}^2} + {{\left( {161\sqrt {878} } \right)}^2} + {{5290}^2}} \right|}}{{\sqrt {{{\left( { - 161\sqrt {878} } \right)}^2} + {{\left( { - 161\sqrt {878} } \right)}^2} + {{5290}^2}} .\sqrt {{{\left( {161\sqrt {878} } \right)}^2} + {{\left( { - 161\sqrt {878} } \right)}^2} + {{5290}^2}} }}\end{array}\)

\[ = \frac{{{{5290}^2}}}{{{{\left( {161\sqrt {878} } \right)}^2} + {{\left( { - 161\sqrt {878} } \right)}^2} + {{5290}^2}}}\]\[ \approx 0,3807\].

Suy ra ((SAB), (SBC)) ≈ 67,6°.

Vậy góc giữa hai mặt phẳng (SAB) và (SBC) khoảng 67,6°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

(H.5.39) Trong một bể hình lập phương cạnh 1 m có chứa một ít nước. Người ta đặt đáy bể nghiêng so với mặt phẳng nằm ngang. Biết rằng, lúc đó mặt nước có dạng hình bình hành ABCD và khoảng cách từ các điểm A, B, C đến đáy bể tương ứng là 40 cm, 44 cm, 48 cm.

a) Khoảng cách từ điểm D đến đáy bể bằng bao nhiêu centimét? (Tính gần đúng, lấy giá trị nguyên).

b) Đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?

(H.5.39) Trong một bể hình lập phương cạnh 1 m có chứa một ít nước. Người ta đặt đáy bể nghiêng so với mặt phẳng nằm ngang. Biết rằng, lúc đó mặt nước có dạng hình bình hành ABCD và khoảng cách từ các điểm A, B, C đến đáy bể tương ứng là 40 cm, 44 cm, 48 cm. a) Khoảng cách từ điểm D đến đáy  (ảnh 1)

Xem đáp án » 11/07/2024 916

Câu 2:

Một mái nhà hình tròn được đặt trên ba cây cột trụ (H.5.33). Các cây cột vuông góc với mặt sàn nhà phẳng và có độ cao lần lượt là 7 m, 6 m, 5 m. Ba chân cột là ba đỉnh của một tam giác đều trên mặt sàn nhà với cạnh dài 4 m. Hỏi mái nhà nghiêng với mặt sàn nhà một góc bao nhiêu độ?

Một mái nhà hình tròn được đặt trên ba cây cột trụ (H.5.33). Các cây cột vuông góc với mặt sàn nhà phẳng và có độ cao lần lượt là 7 m, 6 m, 5 m. Ba chân cột là ba đỉnh của một tam  (ảnh 1)

Xem đáp án » 24/06/2024 435

Câu 3:

Trong không gian Oxyz, tính góc giữa trục Oz và mặt phẳng (P): x + 2y – z – 1 = 0.

Xem đáp án » 24/06/2024 287

Câu 4:

Trong không gian Oxyz, tính góc giữa đường thẳng D và mặt phẳng (P), với: Δ:x+21=y42=z+11, (P): x – y + z – 1 = 0.

Xem đáp án » 11/07/2024 262

Câu 5:

Trong không gian Oxyz, tính góc giữa hai đường thẳng: Δ1:x=1+2ty=1tz=2+3t Δ2:x21=x+11=z22.

Xem đáp án » 11/07/2024 165

Câu 6:

Trong không gian Oxyz, tính góc giữa trục Oz và đường thẳng Δ:x31=y+12=z12.

Xem đáp án » 24/06/2024 156

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL