Câu hỏi:

11/07/2024 6,008

Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình mặt cầu? Xác định tâm và tính bán kính của mặt cầu đó.

a) x2 + y2 + z2 – 2x – 5z + 30 = 0;

b) x2 + y2 + z2 – 4x + 2y – 2z = 0;

c) x3 + y3 + z3 – 2x + 6y – 9z – 10 = 0;

d) x2 + y2 + z2 + 5 = 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Phương trình có a = 1; b = 0; \(c = \frac{5}{2}\); d = 30.

\({a^2} + {b^2} + {c^2} - d = 1 + 0 + {\left( {\frac{5}{2}} \right)^2} - 30 = - \frac{{91}}{4} < 0\). Nên phương trình này không phải là phương trình mặt cầu.

b) Ta có a = 2; b = −1; c = 1; d = 0.

Có a2 + b2 + c2 – d = 22 + (−1)2 + 12 – 0 = 6 > 0.

Do đó đây là phương trình mặt cầu.

Mặt cầu có tâm I(2; −1; 1) và \(R = \sqrt 6 \).

c) Đây không phải là phương trình mặt cầu. Vì phương trình mặt cầu phải có dạng:

x2 + y2 + z2 + …

d) Đây không phải là mặt cầu vì x2 + y2 + z2 = −5 < 0 (Vô lý).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(R = d\left( {I,\left( P \right)} \right) = \frac{{\left| {3.0 + 2.3 + 1} \right|}}{{\sqrt {{3^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{7}{{\sqrt {14} }}\).

Mặt cầu (S) có tâm I(0; 3; −1) và \(R = \frac{7}{{\sqrt {14} }}\) có phương trình là:

\({x^2} + {\left( {y - 3} \right)^2} + {\left( {z + 1} \right)^2} = \frac{{49}}{{14}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay