Giải SGK Toán 12 KNTT Bài 17. Phương trình mặt cầu có đáp án
28 người thi tuần này 4.6 508 lượt thi 14 câu hỏi
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Phần mềm như Google Maps sử dụng công thức Haversine và phương pháp hình học cầu để tính toán khoảng cách giữa hai điểm dựa trên tọa độ địa lý của chúng.
Xuất phát từ việc chuyển đổi tọa độ địa lý sang tọa độ không gian Oxyz, tính góc giữa hai điểm trên bề mặt hình cầu và sau đó chuyển đổi góc đó thành khoảng cách cung tròn.
Lời giải
Điểm M(x; y; z) thuộc mặt cầu (S) khi và chỉ khi IM = R
Û \(\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2} + {{\left( {z - c} \right)}^2}} = R\) hay (x – a)2 + (y − b)2 + (z – c)2 = R2.
Lời giải
a) Mặt cầu (S) có tâm \(I\left( { - 2;0; - \frac{1}{2}} \right)\) và \(R = \frac{3}{2}\).
b) Có \(IM = \sqrt {{4^2} + {0^2} + {{\left( {\frac{3}{2}} \right)}^2}} = \frac{{\sqrt {73} }}{2} > R\).
Do đó điểm M nằm ngoài mặt cầu.
Lời giải
a) Mặt cầu (S) có tâm là gốc tọa độ, bán kính R = 1 có phương trình là:
x2 + y2 + z2 = 1.
b) Đoạn thẳng AB có trung điểm \(J\left( {\frac{3}{2}; - 2;\frac{1}{2}} \right)\).
Mặt cầu (S) có bán kính \(R = \frac{1}{2}AB = \frac{1}{2}\sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( { - 3 + 1} \right)}^2} + {{\left( { - 1 - 2} \right)}^2}} = \frac{{\sqrt {14} }}{2}\).
Mặt cầu (S) có tâm \(J\left( {\frac{3}{2}; - 2;\frac{1}{2}} \right)\) và \(R = \frac{{\sqrt {14} }}{2}\) có phương trình là:
\({\left( {x - \frac{3}{2}} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - \frac{1}{2}} \right)^2} = \frac{7}{2}\).
Lời giải
Ta viết phương trình mặt cầu (S) dưới dạng:
x2 + y2 + z2 – 4x + 6y – 12 = 0
Û x2 – 4x + 4 + y2 + 6y + 9 + z2 = 25
Û (x – 2)2 + (y + 3)2 + z2 = 25.
Vậy (S) là mặt cầu có tâm I(2; −3; 0) và R = 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
