Câu hỏi:

11/07/2024 10,795

Khảo sát thị lực của 100 học sinh, ta thu được bảng số liệu sau:

Khảo sát thị lực của 100 học sinh, ta thu được bảng số liệu sau:   Chọn ngẫu nhiên 1 bạn trong 100 học sinh trên. a) Biết rằng bạn đó có tật khúc xạ, tính xác  (ảnh 1)

Chọn ngẫu nhiên 1 bạn trong 100 học sinh trên.

a) Biết rằng bạn đó có tật khúc xạ, tính xác suất bạn đó là học sinh nam.

b) Biết rằng bạn đó là học sinh nam, tính xác suất bạn đó có tật khúc xạ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A là biến cố “Học sinh đó có tật khúc xạ” và B là biến cố “Học sinh đó là học sinh nam”.

a) Ta có \(P\left( {B|A} \right) = \frac{{18}}{{12 + 18}} = \frac{3}{5}\).

b) Ta có \(P\left( {A|B} \right) = \frac{{18}}{{18 + 32}} = \frac{9}{{25}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi A là biến cố “Lấy được 1 viên bi màu xanh ở hộp thứ nhất” và B là biến cố “Lấy được 2 viên bi màu đỏ ở hộp thứ hai”.

Khi đó ta có \(P\left( A \right) = \frac{3}{9}\); \(P\left( {B|A} \right) = \frac{{C_7^2}}{{C_{11}^2}} = \frac{{21}}{{55}}\).

Suy ra \(P\left( {\overline A } \right) = 1 - P\left( A \right) = \frac{2}{3}\); \(P\left( {B|\overline A } \right) = \frac{{C_8^2}}{{C_{11}^2}} = \frac{{28}}{{55}}\).

Áp dụng công thức xác suất toàn phần:

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = \frac{3}{9}.\frac{{21}}{{55}} + \frac{2}{3}.\frac{{28}}{{55}} = \frac{7}{{15}}\).

b) Ta cần tính \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}}\)\( = \frac{{\frac{2}{3}.\frac{{28}}{{55}}}}{{\frac{7}{{15}}}} = \frac{8}{{11}}\).

Lời giải

Gọi A là biến cố “Học sinh được chọn là học sinh nữ” và B là biến cố “Học sinh được chọn tham gia câu lạc bộ nghệ thuật”.

Ta có P(A) = 0,52; P(B|A) = 0,18; \(P\left( {B|\overline A } \right) = 0,15\).

Suy ra \(P\left( {\overline A } \right) = 1 - P\left( A \right) = 0,48\).

a) \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\) = 0,52.0,18 + 0,48.0,15 = 0,1656.

b) Cần tính \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}}\)\( = \frac{{0,48.0,15}}{{0,1656}} = \frac{{10}}{{23}}\).