Câu hỏi:
11/07/2024 745Tỉ lệ người dân đã tiêm vắc xin phòng bệnh A ở một địa phương là 65%. Trong số những người đã tiêm phòng, tỉ lệ mắc bệnh A là 5% ; trong số những người chưa tiêm phòng tỉ lệ mắc bệnh A là 17%. Chọn ngẫu nhiên một người ở địa phương đó.
a) Tính xác suất người được chọn mắc bệnh A.
b) Biết rằng người được chọn mắc bệnh A. Tính xác suất người đó chưa tiêm vắc xin phòng bệnh A.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi A là biến cố “Người được chọn đã tiêm vắc xin phòng bệnh A” và B là biến cố “Người được chọn mắc bệnh A”.
Ta có P(A) = 0,65; P(B|A) = 0,05; \(P\left( {B|\overline A } \right) = 0,17\).
Suy ra \(P\left( {\overline A } \right) = 1 - P\left( A \right) = 0,35\).
a) \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\) = 0,65.0,05 + 0,35.0,17 = 0,092.
b) Cần tính \(P\left( {\overline A |B} \right)\)
Ta có \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}}\) \( = \frac{{0,35.0,17}}{{0,092}} \approx 0,6467\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hộp thứ nhất có 3 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 3 viên bi xanh và 7 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ hai.
a) Tính xác suất để hai viên bi lấy ra từ hộp thứ hai là bi đỏ.
b) Biết rằng 2 viên bi lấy ra từ hộp thứ hai là bi đỏ, tính xác suất viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ.
Câu 2:
Ở một khu rừng nọ có 7 chú lùn, trong đó có 4 chú luôn nói thật, 3 chú còn lại nói thật với xác suất 0,5. Bạn Tuyết gặp ngẫu nhiên một chú lùn và hỏi xem chú ý ấy có phải là người nói thật không. Gọi A là biến cố “Chú lùn đó luôn nói thật” và B là biến cố “Chú lùn đó nhận mình là người luôn nói thật”.
a) Tính xác suất của các biến cố A và B.
b) Biết rằng chú lùn mà bạn Tuyết gặp tự nhận mình là người luôn nói thật. Tính xác suất để chú lùn đó luôn nói thật.
Câu 3:
Trong một trường học, tỉ lệ học sinh nữ là 52%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ nghệ thuật lần lượt là 18% và 15%. Chọn ngẫu nhiên 1 học sinh của trường.
a) Tính xác suất học sinh được chọn có tham gia câu lạc bộ nghệ thuật.
b) Biết rằng học sinh được chọn có tham gia câu lạc bộ nghệ thuật. Tính xác suất học sinh đó là nam.
Câu 4:
Người ta điều tra thấy ở một địa phương nọ có 2% tài xế sử dụng điện thoại di động khi lái xe. Trong các vụ tai nạn ở địa phương đó, người ta nhận thấy rằng có 10% là do tài xế có sử dụng điện thoại khi lái xe gây ra. Hỏi việc sử dụng điện thoại di động khi lái xe làm tăng xác suất gây tai nạn lên bao nhiêu lần?
Câu 5:
Chị An trả lời hai câu hỏi. Xác suất trả lời đúng câu hỏi thứ nhất là 0,7. Xác suất trả lời đúng câu hỏi thứ hai là 0,9 nếu chị An trả lời đúng câu hỏi thứ nhất và là 0,5 nếu chị An không trả lời đúng câu hỏi thứ nhất.
Gọi A là biến cố “Chị An trả lời đúng câu hỏi thứ nhất” và B là biến cố “Chị An trả lời đúng câu hỏi thứ hai”.
Hãy tìm các giá trị thích hợp điền vào các ô ? ở sơ đồ hình cây sau:
Câu 6:
Khi phát hiện một vật thể bay, xác suất một hệ thống radar phát cảnh báo là 0,9 nếu vật thể bay đó là mục tiêu thật và là 0,05 nếu mục tiêu giả. Có 99% các vật thể bay là mục tiêu giả. Biết rằng hệ thống radar đang phát cảnh báo khi phát hiện một vật thể bay. Tính xác suất vật thể đó là mục tiêu thật.
về câu hỏi!