Câu hỏi:
11/07/2024 32,001Ở một khu rừng nọ có 7 chú lùn, trong đó có 4 chú luôn nói thật, 3 chú còn lại nói thật với xác suất 0,5. Bạn Tuyết gặp ngẫu nhiên một chú lùn và hỏi xem chú ý ấy có phải là người nói thật không. Gọi A là biến cố “Chú lùn đó luôn nói thật” và B là biến cố “Chú lùn đó nhận mình là người luôn nói thật”.
a) Tính xác suất của các biến cố A và B.
b) Biết rằng chú lùn mà bạn Tuyết gặp tự nhận mình là người luôn nói thật. Tính xác suất để chú lùn đó luôn nói thật.
Quảng cáo
Trả lời:
A là biến cố “Chú lùn đó luôn nói thật” và B là biến cố “Chú lùn đó nhận mình là người luôn nói thật”.
a) Trong 7 chú lún có 4 chú lùn luôn nói thật nên \(P\left( A \right) = \frac{4}{7}\). Suy ra \(P\left( {\overline A } \right) = \frac{3}{7}\).
Theo đề ta có P(B|A) = 1; \(P\left( {B|\overline A } \right) = 0,5\).
Ta cần tính P(B).
Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\) \( = \frac{4}{7}.1 + \frac{3}{7}.0,5 = \frac{{11}}{{14}}\).
b) Cần tính P(A|B).
Ta có \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P(B)}}\) \( = \frac{{\frac{4}{7}.1}}{{\frac{{11}}{{14}}}} = \frac{8}{{11}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Gọi A là biến cố “Lấy được 1 viên bi màu xanh ở hộp thứ nhất” và B là biến cố “Lấy được 2 viên bi màu đỏ ở hộp thứ hai”.
Khi đó ta có \(P\left( A \right) = \frac{3}{9}\); \(P\left( {B|A} \right) = \frac{{C_7^2}}{{C_{11}^2}} = \frac{{21}}{{55}}\).
Suy ra \(P\left( {\overline A } \right) = 1 - P\left( A \right) = \frac{2}{3}\); \(P\left( {B|\overline A } \right) = \frac{{C_8^2}}{{C_{11}^2}} = \frac{{28}}{{55}}\).
Áp dụng công thức xác suất toàn phần:
\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = \frac{3}{9}.\frac{{21}}{{55}} + \frac{2}{3}.\frac{{28}}{{55}} = \frac{7}{{15}}\).
b) Ta cần tính \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}}\)\( = \frac{{\frac{2}{3}.\frac{{28}}{{55}}}}{{\frac{7}{{15}}}} = \frac{8}{{11}}\).
Lời giải
Gọi A là biến cố “Học sinh được chọn là học sinh nữ” và B là biến cố “Học sinh được chọn tham gia câu lạc bộ nghệ thuật”.
Ta có P(A) = 0,52; P(B|A) = 0,18; \(P\left( {B|\overline A } \right) = 0,15\).
Suy ra \(P\left( {\overline A } \right) = 1 - P\left( A \right) = 0,48\).
a) \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\) = 0,52.0,18 + 0,48.0,15 = 0,1656.
b) Cần tính \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}}\)\( = \frac{{0,48.0,15}}{{0,1656}} = \frac{{10}}{{23}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)