Câu hỏi:

11/07/2024 32,001

Ở một khu rừng nọ có 7 chú lùn, trong đó có 4 chú luôn nói thật, 3 chú còn lại nói thật với xác suất 0,5. Bạn Tuyết gặp ngẫu nhiên một chú lùn và hỏi xem chú ý ấy có phải là người nói thật không. Gọi A là biến cố “Chú lùn đó luôn nói thật” và B là biến cố “Chú lùn đó nhận mình là người luôn nói thật”.

a) Tính xác suất của các biến cố A và B.

b) Biết rằng chú lùn mà bạn Tuyết gặp tự nhận mình là người luôn nói thật. Tính xác suất để chú lùn đó luôn nói thật.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

A là biến cố “Chú lùn đó luôn nói thật” và B là biến cố “Chú lùn đó nhận mình là người luôn nói thật”.

a) Trong 7 chú lún có 4 chú lùn luôn nói thật nên \(P\left( A \right) = \frac{4}{7}\). Suy ra \(P\left( {\overline A } \right) = \frac{3}{7}\).

Theo đề ta có P(B|A) = 1; \(P\left( {B|\overline A } \right) = 0,5\).

Ta cần tính P(B).

Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\) \( = \frac{4}{7}.1 + \frac{3}{7}.0,5 = \frac{{11}}{{14}}\).

b) Cần tính P(A|B).

Ta có \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P(B)}}\) \( = \frac{{\frac{4}{7}.1}}{{\frac{{11}}{{14}}}} = \frac{8}{{11}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi A là biến cố “Lấy được 1 viên bi màu xanh ở hộp thứ nhất” và B là biến cố “Lấy được 2 viên bi màu đỏ ở hộp thứ hai”.

Khi đó ta có \(P\left( A \right) = \frac{3}{9}\); \(P\left( {B|A} \right) = \frac{{C_7^2}}{{C_{11}^2}} = \frac{{21}}{{55}}\).

Suy ra \(P\left( {\overline A } \right) = 1 - P\left( A \right) = \frac{2}{3}\); \(P\left( {B|\overline A } \right) = \frac{{C_8^2}}{{C_{11}^2}} = \frac{{28}}{{55}}\).

Áp dụng công thức xác suất toàn phần:

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = \frac{3}{9}.\frac{{21}}{{55}} + \frac{2}{3}.\frac{{28}}{{55}} = \frac{7}{{15}}\).

b) Ta cần tính \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}}\)\( = \frac{{\frac{2}{3}.\frac{{28}}{{55}}}}{{\frac{7}{{15}}}} = \frac{8}{{11}}\).

Lời giải

Gọi A là biến cố “Học sinh được chọn là học sinh nữ” và B là biến cố “Học sinh được chọn tham gia câu lạc bộ nghệ thuật”.

Ta có P(A) = 0,52; P(B|A) = 0,18; \(P\left( {B|\overline A } \right) = 0,15\).

Suy ra \(P\left( {\overline A } \right) = 1 - P\left( A \right) = 0,48\).

a) \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\) = 0,52.0,18 + 0,48.0,15 = 0,1656.

b) Cần tính \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}}\)\( = \frac{{0,48.0,15}}{{0,1656}} = \frac{{10}}{{23}}\).

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay