Câu hỏi:

11/07/2024 41,780 Lưu

Người ta điều tra thấy ở một địa phương nọ có 2% tài xế sử dụng điện thoại di động khi lái xe. Trong các vụ tai nạn ở địa phương đó, người ta nhận thấy rằng có 10% là do tài xế có sử dụng điện thoại khi lái xe gây ra. Hỏi việc sử dụng điện thoại di động khi lái xe làm tăng xác suất gây tai nạn lên bao nhiêu lần?

Người ta điều tra thấy ở một địa phương nọ có 2% tài xế sử dụng điện thoại di động khi lái xe. Trong các vụ tai nạn ở địa phương đó, người ta nhận thấy rằng có 10% là do tài xế có sử dụng  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A là biến cố “Tài xế gây tai nạn” và B là biến cố “Tài xế sử dụng điện thoại di động khi lái xe”.

Theo đề ta có P(B) = 0,02; P(B|A) = 0,1.

Suy ra \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 0,98\); \(P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 0,9\).

Cần tính \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\).

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\)\( = 0,02.x + 0,98.y\)

(đặt \(P\left( {A|B} \right) = x;P\left( {A|\overline B } \right) = y\)).

\(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\) \[ \Leftrightarrow 0,1 = \frac{{0,02.x}}{{0,02x + 0,98y}}\]\[ \Leftrightarrow 0,02x + 0,98y = 0,2.x\]

Þ \(y = \frac{9}{{49}}x\).

Ta có \(\frac{{P\left( {A|B} \right)}}{{P\left( {A|\overline B } \right)}} = \frac{x}{y} = \frac{x}{{\frac{9}{{49}}x}} = \frac{{49}}{9} \approx 5,44\).

Vậy việc sử dụng điện thoại di động khi lái xe làm tăng xác suất gây tai nạn lên 5,44 lần.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi A là biến cố “Lấy được 1 viên bi màu xanh ở hộp thứ nhất” và B là biến cố “Lấy được 2 viên bi màu đỏ ở hộp thứ hai”.

Khi đó ta có \(P\left( A \right) = \frac{3}{9}\); \(P\left( {B|A} \right) = \frac{{C_7^2}}{{C_{11}^2}} = \frac{{21}}{{55}}\).

Suy ra \(P\left( {\overline A } \right) = 1 - P\left( A \right) = \frac{2}{3}\); \(P\left( {B|\overline A } \right) = \frac{{C_8^2}}{{C_{11}^2}} = \frac{{28}}{{55}}\).

Áp dụng công thức xác suất toàn phần:

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = \frac{3}{9}.\frac{{21}}{{55}} + \frac{2}{3}.\frac{{28}}{{55}} = \frac{7}{{15}}\).

b) Ta cần tính \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}}\)\( = \frac{{\frac{2}{3}.\frac{{28}}{{55}}}}{{\frac{7}{{15}}}} = \frac{8}{{11}}\).

Lời giải

Gọi A là biến cố “Học sinh được chọn là học sinh nữ” và B là biến cố “Học sinh được chọn tham gia câu lạc bộ nghệ thuật”.

Ta có P(A) = 0,52; P(B|A) = 0,18; \(P\left( {B|\overline A } \right) = 0,15\).

Suy ra \(P\left( {\overline A } \right) = 1 - P\left( A \right) = 0,48\).

a) \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\) = 0,52.0,18 + 0,48.0,15 = 0,1656.

b) Cần tính \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}}\)\( = \frac{{0,48.0,15}}{{0,1656}} = \frac{{10}}{{23}}\).