Câu hỏi:

25/06/2024 659

Trong không gian \[Oxyz\] cho các điểm \(A\left( {5\,;\,\,1\,;\,\,5} \right)\,;\,\,B\left( {4\,;\,\,3\,;\,\,2} \right)\,;\,\,C\left( { - 3\,;\,\, - 2\,;\,\,1} \right).\) Điểm \(I\left( {a\,;\,\,b\,;\,\,c} \right)\) là tâm đường tròn ngoại tiếp tam giác \[ABC.\] Tính \(a + 2b + c\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AB}  = \left( { - 1\,;\,\,2\,;\,\, - 3} \right)}\\{\overrightarrow {BC}  = \left( { - 7\,;\,\, - 5\,;\,\, - 1} \right)}\end{array} \Rightarrow \overrightarrow {AB}  \cdot \overrightarrow {BC}  = \vec 0 \Rightarrow } \right.\) tam giác \[ABC\] vuông tại \[B.\]

\( \Rightarrow \) Tâm \(I\) của đường tròn ngoại tiếp tam giác \[ABC\] là trung điểm của cạnh huyền \[AC.\]

\( \Rightarrow I\left( {1\,;\,\, - \frac{1}{2}\,;\,\,3} \right).\)

Vậy \(a + 2b + c = 3.\) Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.

Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].

Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.

Lời giải

Media VietJack

Chọn hệ trục toạ độ \[Oxyz\] sao cho \(O \equiv A\), tia \(Ox \equiv AD\), tia \(Oy \equiv AB.\)

Khi đó, \[A\left( {0\,;\,\,0\,;\,\,0} \right)\,;\,\,B\left( {0\,;\,\,2\,\,500\,;\,\,0} \right)\,;\,\]\[\,C\left( {1\,\,800\,;\,\,2500\,;\,\,0} \right)\,;\]\[D\left( {1500\,\,;\,\,0\,;\,\,0} \right).\]

Khi hạ độ cao các điểm ở các điểm  xuống \[B,\,\,C,\,\,D\] thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng ta có các điểm mới \[B'\left( {0\,;\,\,2\,\,500\,;\,\, - 10} \right)\,;\,\,C'\left( {1800\,;\,\,2500\,;\,\, - a} \right)\,;\,\,\]\[D'\left( {1500\,;\,\,0\,;\,\, - 6} \right).\]

Theo bài ra có \(A,\,\,B',\,\,C',\,\,D'\) đồng phẳng.

Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0.\)

Do \[C'\left( {1\,\,800\,;\,\,2500\,;\,\, - a} \right) \in \left( {AB'D'} \right)\] nên có \(1800 + 2500 - 250a = 0 \Rightarrow a = 17,2.\)

Vậy \(a = 17,2\;\,{\rm{cm}}.\)Chọn B.

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP