Câu hỏi:
25/06/2024 285Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{3x + 1}&{{\rm{ khi }}x > 2}\\{ax - 2a + b}&{{\rm{ khi }}x \le 2}\end{array}} \right..\) Biết \[\int\limits_0^2 {f\left( {{x^2} + 1} \right)x} \,dx = 5.\] Giá trị của biểu thức \(T = 2a - {b^2} + 1\) bằng
Quảng cáo
Trả lời:
Hàm số liên tục tại \(x = 2 \Rightarrow 3 \cdot 2 + 1 = 2a - 2a + b \Leftrightarrow b = 7\).
Đặt \(t = {x^2} + 1 \Rightarrow {\rm{d}}t = 2x\;{\rm{d}}x\).
Đổi cận \(\left\{ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow t = 1}\\{x = 2 \Rightarrow t = 5}\end{array}} \right.\).
Suy ra \(\frac{1}{2}\int\limits_1^5 {f\left( t \right)} \,{\rm{d}}t = 5 \Leftrightarrow \int\limits_1^5 {f\left( x \right)} \,{\rm{d}}x = 10\)\( \Leftrightarrow \int\limits_1^2 {\left( {ax - 2a + 7} \right)} \,{\rm{d}}x + \int\limits_2^5 {\left( {3x + 1} \right)} \,{\rm{d}}x = 10\)
\( \Leftrightarrow a\frac{{{x^2}}}{2} - 2ax + \left. {7x} \right|_1^2 = - \frac{{49}}{2} \Leftrightarrow - \frac{1}{2}a + 7 = - \frac{{49}}{2} \Leftrightarrow a = 63\).
Vậy \(T = 2 \cdot 63 - {7^2} + 1 = 78.\) Chọn C.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.
Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].
Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.
Lời giải
Chọn hệ trục toạ độ \[Oxyz\] sao cho \(O \equiv A\), tia \(Ox \equiv AD\), tia \(Oy \equiv AB.\)
Khi đó, \[A\left( {0\,;\,\,0\,;\,\,0} \right)\,;\,\,B\left( {0\,;\,\,2\,\,500\,;\,\,0} \right)\,;\,\]\[\,C\left( {1\,\,800\,;\,\,2500\,;\,\,0} \right)\,;\]\[D\left( {1500\,\,;\,\,0\,;\,\,0} \right).\]
Khi hạ độ cao các điểm ở các điểm xuống \[B,\,\,C,\,\,D\] thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng ta có các điểm mới \[B'\left( {0\,;\,\,2\,\,500\,;\,\, - 10} \right)\,;\,\,C'\left( {1800\,;\,\,2500\,;\,\, - a} \right)\,;\,\,\]\[D'\left( {1500\,;\,\,0\,;\,\, - 6} \right).\]Theo bài ra có \(A,\,\,B',\,\,C',\,\,D'\) đồng phẳng.
Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0.\)
Do \[C'\left( {1\,\,800\,;\,\,2500\,;\,\, - a} \right) \in \left( {AB'D'} \right)\] nên có \(1800 + 2500 - 250a = 0 \Rightarrow a = 17,2.\)
Vậy \(a = 17,2\;\,{\rm{cm}}.\)Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.