Câu hỏi:

25/06/2024 163

Cho \[\left( {x\,;\,\,y} \right)\] là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y = a}\\{{x^2} + {y^2} = 6 - {a^2}}\end{array}} \right.\). Giá trị của \(a\) để biểu thức \(F = xy + 2\left( {x + y} \right)\) đạt giá trị nhỏ nhất là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(\left\{ {\begin{array}{*{20}{l}}{x + y = a}\\{{x^2} + {y^2} = 6 - {a^2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x + y = a}\\{{{\left( {x + y} \right)}^2} - 2xy = 6 - {a^2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x + y = a}\\{xy = {a^2} - 3}\end{array}} \right.} \right.} \right.\).

Điều kiện tồn tại \(x,\,\,y\) là: \({\left( {x + y} \right)^2} \ge 4xy \Leftrightarrow {a^2} \ge 4\left( {{a^2} - 3} \right)\)\( \Leftrightarrow {a^2} \le 4 \Leftrightarrow  - 2 \le a \le 2.{\rm{ }}\)

Khi đó \(F = {a^2} + 2a - 3 = {\left( {a + 1} \right)^2} - 4 \ge  - 4\)\( \Rightarrow \min F =  - 4 \Leftrightarrow a =  - 1\,\,({\rm{TM}})\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.

Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].

Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.

Lời giải

Media VietJack

Chọn hệ trục toạ độ \[Oxyz\] sao cho \(O \equiv A\), tia \(Ox \equiv AD\), tia \(Oy \equiv AB.\)

Khi đó, \[A\left( {0\,;\,\,0\,;\,\,0} \right)\,;\,\,B\left( {0\,;\,\,2\,\,500\,;\,\,0} \right)\,;\,\]\[\,C\left( {1\,\,800\,;\,\,2500\,;\,\,0} \right)\,;\]\[D\left( {1500\,\,;\,\,0\,;\,\,0} \right).\]

Khi hạ độ cao các điểm ở các điểm  xuống \[B,\,\,C,\,\,D\] thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng ta có các điểm mới \[B'\left( {0\,;\,\,2\,\,500\,;\,\, - 10} \right)\,;\,\,C'\left( {1800\,;\,\,2500\,;\,\, - a} \right)\,;\,\,\]\[D'\left( {1500\,;\,\,0\,;\,\, - 6} \right).\]

Theo bài ra có \(A,\,\,B',\,\,C',\,\,D'\) đồng phẳng.

Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0.\)

Do \[C'\left( {1\,\,800\,;\,\,2500\,;\,\, - a} \right) \in \left( {AB'D'} \right)\] nên có \(1800 + 2500 - 250a = 0 \Rightarrow a = 17,2.\)

Vậy \(a = 17,2\;\,{\rm{cm}}.\)Chọn B.

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP